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Abstract: Leukemia, a global health challenge characterized by malignant blood cell proliferation, de-

mands innovative diagnostic techniques due to its increasing incidence. Among leukemia types, Acute 

Lymphoblastic Leukemia (ALL) emerges as a particularly aggressive form affecting diverse age groups. 

This study proposes an advanced mechanized system utilizing Deep Neural Networks for detecting 

ALL blast cells in microscopic blood smear images. Achieving a remarkable accuracy of 97% using 

MobileNetV2, our system demonstrates high sensitivity and specificity in identifying multiple ALL 

subtypes. Furthermore, we introduce cutting-edge telediagnosis software facilitating real-time support 

for clinicians in promptly and accurately diagnosing various ALL subtypes from microscopic blood 

smear images. This research aims to enhance leukemia diagnosis efficiency, which is crucial for the 

timely intervention and managing this life-threatening condition. 

Keywords: Acute Lymphoblastic Leukemia; Deep Learning; Image Processing; Healthcare; Telediag-

nosis. 

 

1. Introduction 

Blood is a complex biofluid containing an assortment of cellular and acellular elements 
crucial for sustaining human health. The primary blood constituents include plasma, leuko-
cytes, erythrocytes, and platelets. Plasma is the predominant blood fraction, accounting for 
approximately 55% of the total blood volume. It is characterized by a heterogeneous mixture 
consisting primarily of water along with various solutes such as ions, proteins, lipids, hor-
mones, and metabolic end products. The remaining 45% of the blood volume comprises 
erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes). 
Erythrocytes represent over 40% of the entire blood volume; their concentration ranges be-
tween 4-6 million cells per microliter in healthy adults. Their primary function is to transport 
oxygen from the lungs to body tissues while simultaneously carrying carbon dioxide back to 
be exhaled[1]. Leukocytes are a diverse group of cells that play a crucial role in immune de-
fense against foreign antigens and infections. Their concentration typically ranges from 4,500 
to 11,000 cells per microliter of blood[2]. Disruptions or deficiencies in any component 
within the blood system can lead to various health complications. Acute Lymphoblastic Leu-
kemia (ALL), a highly hazardous category of malignancy affecting either the bone marrow or 
circulating blood cells, is one such severe condition. It occurs across all age groups and affects 
both pediatric and adult populations alike. ALL is characterized by an excessive accumulation 
of immature lymphocytes (or blast cells) originating from hematopoietic stem cells residing 
in the bone marrow[3]. These abnormal cell proliferations interfere with normal blood pro-
duction processes, leading to immunosuppression, increased susceptibility to infections, 
bleeding disorders due to impaired platelet function as well as anemia caused by decreased 
erythrocyte production. Lymphocytes are another type of white blood cell that plays a fun-
damental role in the immune system. They can be categorized into three primary types - 
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normal, atypical, and reactive lymphocytes based on their morphological features observed 
under microscopic examination conducted by skilled pathologists[4]. In ALL cases specifi-
cally: 
1. L1 subtype: The smallest cell type with homogeneous size & chromatin texture 
2. L2 subtype: Larger than L1 & displays nuclear heterogeneity 
3. L3 subtype: Features larger vacuoles distributed among the cells compared to those pre-

sent in L1[5], [6]. 
According to data published by the International Agency for Research on Cancer 

(IARC), an affiliate of the World Health Organization (WHO) [7], Leukemia was responsible 
for approximately 4,37,033 cases worldwide in 2018, with nearly 3,03,006 fatalities. The global 
incidence rate of this malignancy stood at 5.2 per 100,000 individuals, and its mortality rate at 
3.5 per 100,000 individuals. Figure 1 shows the prevalence and death due to ALL globally 
over the last 30 years (1990 - 2019). Where only in 2019, around 975K were affected, and 
around 47.5K died. In response to this pressing health concern, a comprehensive research 
investigation was conducted within the Pediatric Hematology and Oncology Department at 
Dhaka Shishu Hospital in Bangladesh between January 2014 and December 2016[8]. The 
accurate diagnosis of acute lymphoblastic Leukemia (ALL) necessitates a comprehensive eval-
uation of both bone marrow and blood smear morphology by experienced hemato-
pathologists. However, challenges persist regarding standardization and inter-observer varia-
bility, leading to potential inaccuracies when pathologists employ manual detection methods 
[9]. Inter- and intra-class variations among pathologists further exacerbate these issues, re-
sulting in a low agreement rate of only 76.6% during leukemia diagnosis. Furthermore, intel-
ligent detection of leukemic blast cells presents additional challenges due to the inherent com-
plexity of white blood cells (WBCs), which encompass asymmetrical borders as well as tex-
tural resemblances with other constituents present within blood samples [10]. Effective data 
preparation is essential to enhance the learnability of deep learning (DL) models for ALL 
detection. The precision and temporal intricacy associated with accurately identifying ALL 
subtypes rely heavily on the quality and relevance of extracted attributes utilized for pixel-
wise categorization model training. 

 

Figure 1. Death & Prevalence of ALL from 1990 – 2019 

This study implements and experiments with several transfer learning modes, namely 
MobileNetV2, ResNet50, VGG19, and a base ConvNet, to develop a DNN model that can 
address the challenges of ALL subtypes detection with high performance. Their established 
efficacy in DNN development underpins the selection of these transfer learning models in 
this research. Transfer learning leverages pre-trained models on large datasets, allowing for 
knowledge transfer from source tasks to target tasks, thus significantly reducing computa-
tional costs and training time. Specifically, the CNN-based MobileNetV2, ResNet50, and 
VGG19 were chosen due to their demonstrated versatility and effectiveness across various 
computer vision tasks, including image classification, object detection, and feature extraction. 
Finally, achieves an impressive accuracy rate of 97% using MobileNetV2 from an imbalanced 
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nature multiclass dataset. Notably, this lightweight model exhibits robust performance even 
when dealing with imbalanced datasets without compromising accuracy. Moreover, this ap-
proach offers real-time telediagnosis support through a web-based application platform—an 
effective solution addressing limitations encountered by traditional diagnostic methods. 

2. Literature Review 

Researchers have explored various methodologies to identify leukemia cells from pe-
ripheral blood and bone marrow smears, including Machine Learning (ML), medical image 
processing techniques, and Deep Neural Networks (DNNs).  

The study [3] proposed a fully automated system that employed the YOLO v4 algorithm 
for detecting ALL blast cells in microscopic blood smear images. Their approach achieved 
impressive results with Mean Average Precision (MAP) rates of 96.06% for the ALL-IDB1 
dataset and 98.7% for the CNMC 2019 dataset.  

In[6], the authors proposed a three-part system designed for leukemia cell detection in 
blood smears using datasets such as ALL-IDB1 and ALL-IDB2. The first mechanism in-
volved a fusion of features extracted from Gray Level Co-occurrence Matrix (GLCM), Local 
Binary Pattern (LBP), and Fuzzy Color Histogram (FCH) techniques. These features were 
then utilized with both Artificial Neural Network (ANN) and Feed-Forward Neural Network 
(FFNN) models, achieving 100% and 98.11% precision rates, respectively. Next, transfer 
learning was employed using CNN models like AlexNet, GoogleNet, and ResNet-18. All 
these models achieved an accuracy rate of 100%. The third part combined CNNs with Sup-
port Vector Machines (SVMs) for feature map classification; specifically, AlexNet + SVM 
and ResNet-18 + SVM attained 100% accuracy, while Goog-LeNet + SVM reached 98.1% 
accuracy. However, there are concerns regarding the robustness of the data preparation pipe-
line due to limited denoising techniques used during pre-processing.  

The study[11] proposed a multi-step deep learning (DL) framework for automated leu-
kemia cell segmentation in bone marrow images. The pipeline involved several stages: initial 
segmentation, fine-tuned region-based convolutional neural network (FRCNN) training, 
manual feature extraction, and subsequent training of multiple DL models for binary predic-
tions. Notably, a pre-trained ResNet50 model was employed to predict NPM1 status. The 
FRCNN model achieved an impressive precision rate of 0.97 when segmenting cells from 
bone marrow smear images. Furthermore, the binary classification model generated area un-
der the curve (AUC) values of 0.97 for both receiver operating characteristic (ROC) and pre-
cision-recall curves; it also yielded a micro-average accuracy of 0.91 in distinguishing between 
healthy bone marrow donor samples and acute myeloid Leukemia (AML). Additionally, their 
DL model demonstrated an elevated precision level of 0.86 in predicting NPM1 mutation 
status. However, it is essential to acknowledge that employing manual feature extraction may 
introduce inefficiencies and errors when handling large datasets; this limitation should be ad-
dressed in future research endeavors.  

In [12], the authors introduced a feature extraction technique that combines DL and 
image processing methodologies. The proposed approach consists of two key phases: first, 
identifying regions of interest (ROIs) using a CMYK-moment based localization technique; 
second, adopting a DL-based feature fusion strategy to extract features from the identified 
regions. Notably, their method achieved an impressive overall classification accuracy of 
97.57%. However, it is important to consider that the pipeline employed for image data prep-
aration may not be universally applicable, potentially leading to reduced accuracy when deal-
ing with new or diverse image datasets.  

In a study [13], the author proposed an advanced multiclass WBC differentiation ap-
proach utilizing three DL models: ResNet50, ResNext50-32, and ResNext101-32. The pro-
posed method achieved impressive performance metrics, including accuracy of 0.8149, aver-
age precision (AP) of 0.7982, area under the curve (AUC) of 0.8293, and F1 score of 0.8073. 
Moreover, in this investigation, researchers compiled a retrospective dataset consisting of 
1,732 bone marrow images containing a total of 27,184 cellular entities; this extensive dataset 
encompassed both individual cells (24,165 instances) and cell debris samples (2,983 instances), 
obtained from a cohort comprising 89 pediatric leukemia patients who were treated at the 
Shanghai Children’s Medical Center. To train the model effectively, 70% of the cellular enti-
ties were allocated to the training set for learning purposes, while the remaining cells were 
carefully partitioned among test sets and validation sets following an organized scheme.  
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In the study [14], the authors constructed an object detection model based on Faster 
RCNN, incorporating Region Proposal Network (RPN) and Fast R-CNN for candidate target 
box selection and accurate target classification and regression. Compared to standard ap-
proaches, their technique showed a marginal decrease in recall by 4% but achieved significant 
improvements in precision by 26.4%, F1-score by 12.1%, and Average Precision at IoU=0.5 
(AP@50) by 3%. The model reached a recall of 0.710, precision of 0.496, AP@50 of 0.533, 
and F1-score of 0.575; this pioneering methodology demonstrates its effectiveness in provid-
ing a reliable framework for morphological evaluation of cells derived from bone marrow 
samples.  

Furthermore, a study [15] proposes a revolutionary modality for Acute Lymphoblastic 
Leukemia (ALL) recognition using the C-NMC-2019 dataset with an ensemble strategy that 
leverages state-of-the-art deep learning techniques combined with transfer learning applica-
tions from five pre-trained networks: Xception, VGG-16, InceptionResNet-V2, Mo-
bileNetV2, and DenseNet-121. The visual input undergoes convolutional layers with small 
receptive fields (3 × 3), followed by integration into a Kappa-based ensemble model to 
achieve outstanding performance in ALL recognition – yielding impressive results such as a 
Weighted F-Score (WFS) of 89.72% and Area Under the Curve (AUC) value of 94.8%. These 
findings highlight the immense potentiality of this approach as both a robust and accurate 
framework for ALL recognition; it could potentially revolutionize the medical imaging diag-
nosis domain while enabling timely identification & treatment options, leading to improved 
patient care quality. In the study [16], the authors addressed the critical challenge of brain 
tumor classification from Magnetic Resonance Imaging (MRI) images. They proposed a cus-
tom, lightweight Convolutional Neural Network (CNN) model based on the modified VGG-
19 architecture, which effectively reduced computational complexity while achieving an im-
pressive 96.42% classification accuracy.  

Similarly, in the study [17], researchers introduced a novel and innovative feature selec-
tion algorithm that synergistically combined the strengths of wrapper, filter, and ensemble 
methods intending to maximize prediction accuracy in a chronic kidney disease dataset. The 
proposed approach achieved an astounding 100% accuracy rate – highlighting its immense 
potential for facilitating medical diagnosis and treatment processes. 

Research in acute lymphoblastic leukemia detection and classification has seen signifi-
cant advancements, particularly with the utilization of DNNs and ML techniques. However, 
several research gaps persist despite these advancements. Firstly, there is a need for a com-
prehensive approach and a generalized model that can effectively handle ALL blast cells' var-
ied patterns, shapes, and textures. While existing studies have made strides in this direction, 
there is still room for improvement in developing a methodology that can be integrated with 
operational software and accurately identify blast cells in real-time. Additionally, the lack of a 
universally applicable methodology for image analysis tasks in leukemia diagnosis remains a 
challenge. Addressing these gaps will contribute to the development of more robust and 
widely applicable systems for leukemia detection and classification, ultimately enhancing 
healthcare accessibility and affordability. 

3. Proposed Method 

We have chosen to utilize publicly available ALL datasets to develop our deep neural 
network (DNN) models. The schematic workflow of our proposed methodology is presented 
in Figure 2. Initially, we accessed the dataset via Kaggle API and partitioned it into training, 
validation, and testing sets with the aim of mitigating potential data leakage and overfitting 
issues. Subsequently, our pre-processing pipeline was applied solely to the training set while 
normalizing images from both validation and testing sets. This critical pre-processing phase 
ensures that disparities between global and local minima-maxima are preserved, thereby re-
ducing risks associated with data leakage and overfitting. Next, we inputted training and vali-
dation images into DNN architectures; multiple DNN algorithms were trained using these 
datasets, followed by their evaluation during the validation stages. Based on achieved valida-
tion accuracy scores among various algorithms under consideration, optimal models were 
selected for further use. In subsequent phases of experimentation, normalized test images 
underwent rigorous testing using multiple optimized DNN models, which subsequently clas-
sified them into four distinct subtypes: Benign cells, Early Pre-B cells, Pre-B cells, and Pro-B 
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cells - thus facilitating identification across different subtypes of Acute Lymphoblastic Leu-
kemia (ALL). 

 

Figure 2. The Proposed Methodology’s Workflow. 

3.1. Dataset Description 

This study made use of the meticulously curated ALL Image dataset, which comprises 
3256 peripheral blood smear images collected from 89 patients suspected of Acute Lympho-
blastic Leukemia (ALL) at Taleqani Hospital's Bone Marrow Laboratory in Tehran, Iran [18], 
[19]. The dataset encompasses images sourced from 25 healthy individuals diagnosed with 
benign conditions (hematogenous) and 64 patients who received definitive diagnoses for var-
ious subtypes of ALL: Early Pre-B, Pre-B, and Pro-B. The ALL dataset served as both training 
material and a key reference point for developing and validating multiple deep neural net-
works (DNN) models. Visual images were obtained using a Zeiss camera integrated with a 
microscope equipped with 100x magnification capabilities; specialists employed flow cytom-
etry to accurately identify cell types and subtypes. Figure 3 illustrates examples of Benign 
(hematogone) Cells alongside early pre-B ALL Cells, pre-B ALL Cells, and pro-B ALL Cells, 
respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Representative Images of Different Subtypes of Acute Lymphoblastic Leukemia (a) Be-
nign; (b) Early Pre-B; (c) Pre-B; (d) Pro-B. 
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3.2. Data Preparation Pipeline 

The quality and preparation of input data significantly influence the effectiveness of 
DNN models. Hence, our data pre-processing pipeline incorporates a suite of advanced tech-
niques specifically tailored to enhance microscopic images used for ALL identification. These 
techniques encompass but are not limited to Data Augmentation, Normalization, and Stand-
ardization. Specifically, data augmentation is implemented dynamically during the data loading 
process. Augmentation parameters, including rotation, zoom, and shear, are applied to the 
images on-the-fly during training, effectively expanding the diversity of the dataset and en-
hancing the model's ability to generalize. By strategically applying these pre-processing tech-
niques, we aim to optimize the discriminative capabilities of our DNN-based system for de-
tecting ALL while enhancing overall efficacy and accuracy.  

3.3. Deep Neural Network Architecture 

In pursuance of the research objectives articulated in this work, we have endeavored to 
integrate the following cutting-edge DNN algorithms. 
• Convolutional Neural Network (ConvNet) 
• MobileNetV2 
• Residual Neural Network 50 (ResNet50) 
• Visual Geometry Group 2019 (VGG19) 

3.1.1. Convolutional Neural Network (ConvNet) 

We have meticulously designed and optimized a deep and sophisticated Convolutional 
Neural Network (ConvNet) architecture with unparalleled complexity. The ConvNet model 
consists of 11 stacked layers, including 4 Convolutional Layers, 3 Max Pooling Layers, 2 
Dropout Layers, a single Flatten Layer, and a Dense Layer equipped with SoftMax activation 
function for multiclass classification tasks. This model boasts an impressive total of 5,638,440 
trainable parameters. These parameters facilitate a comprehensive understanding of the un-
derlying data distribution, enabling the generation of high-quality insights into the targeted 
problem domain through nuanced learning patterns. The strategic configuration of the Con-
vNet architecture was optimized to strike a balance between computational efficiency and 
model accuracy, resulting in an exceptionally high-performing model for multiclass classifica-
tion. 

3.3.2. MobileNetV2 Architecture 

We have devised an innovative MobileNetV2 architecture consisting of 81-layer depth 
incorporating elaborate assemblies of computational modules such as 13 Conv2D strata, 24 
Batch Normalization-based Convolutional layers, 26 Rectified Linear Unit (ReLU) activation 
function-based layers, 12 Depth-wise Convolutional strata, 4 Zero-padding layers, a single 
Flatten layer and final Dense layer comprising four distinct units all utilizing SoftMax activa-
tion function. This network architecture boasts a total parameter count amounting to 34.5M, 
including trainable 32.25M and non-trainable parameters 2.25M. This remarkable degree of 
flexibility allows it to capture intricate patterns in high-dimensional data spaces, making it 
highly suitable for various applications such as computer vision or natural language processing 
requiring sophisticated & scalable ML models. 

3.3.3. Residual Neural Networks 50 (ResNet50) 

Our ResNet50 architecture comprises hierarchical layers totaling up to 149 arranged sys-
tematically across 42 Activation layers, 46 Convolutional layers, 45 Batch-wise Normalization, 
16 Add mechanisms, 7 Zero Padding layers, a Flatten layer, and a Dense layer. With extensive 
parameterization totaling around 23 million parameters, out of which only about 400k are 
trainable while the remaining 23M are non-trainable, this provides exceptional representa-
tional power, enabling complex pattern identification tasks within high-dimensional datasets 

3.3.4. Visual Geometry Group 2019 (VGG19) 

The VGG19 convolutional neural network showcases impressive representational 
power across diverse computer vision tasks due largely to its highly-parameterized DL design 
consisting primarily of 16 distinct convolutional filters, five max pooling operations, a flatten 
operation stage followed by a dense output unit. Collectively contributing towards enhanced 
discriminative capabilities, boasting nearly 20 million learnable parameters inclusive of both 
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trainable & non-trainable components where 100k remain trainable while the remaining 20M 
stay non-trainable, respectively. 

3.4. The Intelligent Telediagnosis Application 

We have successfully designed and implemented an innovative system to expedite the 
detection of ALL subtypes by developing a state-of-the-art real-time telediagnosis web appli-
cation. The abstract architecture of this Telediagnosis software is visually illustrated in Figure 
4.  

 

Figure 4. The architecture of the telediagnosis application. 

The Web App first collects ALL Images from the patient or clinician, who constitutes 
the user end. The cloud promptly executes various image processing modules and then dis-
cerns which Deep Neural Network (DNN) model would be most optimal for analysis based 
on these processed images. The selected DNN model subsequently employs its predictive 
analysis functionalities to determine the subtype of ALL present within each input micro-
scopic image file within an average of 3 seconds. These resultant findings are then effectively 
transferred back to the user end, where they can be easily accessed and comprehended 
through intuitive UI elements, as shown in Figure 5. This developed web app promises to 
significantly accelerate diagnosis across all subtypes of Acute Lymphoblastic Leukemia (ALL), 
resulting in expedited treatment interventions that ultimately lead to improved patient out-
comes. To achieve this goal, we have written our application using Python 3.8 and Flask 
micro-framework for building web applications while also utilizing Render for API calls and 
cloud operations. Furthermore, we have employed TensorFlow-cpu alongside Keras & 
OpenCV libraries, among others, when developing our DL modules. We plan to reduce the 
computational time further and increase the robustness of the application by scaling our sys-
tem setup.  

 

Figure 5. Microscopic image file upload and result page. 
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4. Results and Discussion 

This study aimed to employ multiple DNNs for the identification of Acute Lympho-
blastic Leukemia subtypes through the analysis of microscopic blood smear images. Initially, 
we individually trained four distinct DNN models and recorded their respective validation 
accuracies. Subsequently, the performance of these models was evaluated using the test da-
taset with the built-in model evaluator method provided by Keras. The most effective model, 
as determined by its accuracy in the evaluation stage, was selected for integration into the 
telediagnosis web application. Furthermore, the selected model underwent rigorous testing 
again using the test data to assess its classification performance, specifically focusing on met-
rics such as precision and recall pertinent to the medical domain. Detailed outcomes regarding 
the performance of the trained models throughout different phases are delineated in subse-
quent subsections of this study. 

4.1. MobileNetV2 Model 

Examining the optimized MobileNetV2 model encompasses assessing its performance 
across various metrics, including training validation accuracy and loss. Remarkable accuracy 
scores of 0.9312 and 0.9799 have been attained for the corresponding phases. Furthermore, 
the model's proficiency is underscored by the recorded loss metrics during training and vali-
dation, standing at 0.7753 and 0.1792, respectively. In Figure 6, a graphical representation is 
provided, illustrating the relationship between training accuracy and validation accuracy, as 
well as training loss and validation loss of the MobileNetV2 model, while showcasing robust 
generalization capabilities. 

 

Figure 6. Accuracy and Loss of the MobileNetV2 Model during Training and Validation. 

4.2. Convolutional Neural Network (ConvNet) Model 

The optimized ConvNet model demonstrates notable accuracy and minimal loss 
measures across its training and validation stages, as depicted in Figure 7. This graphical rep-
resentation offers insight into its performance. The observed accuracy rates and low loss val-
ues across these phases confirm the model's proficiency in delivering precise and dependable 
predictions. 

 

Figure 7. Accuracy and Loss of the ConvNet Model during Training and Validation. 
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4.3. Residual Neural Network 50 (ResNet50) Model 

The assessment of the streamlined ResNet50 model's performance, particularly concern-
ing its accuracy and loss across training and validation datasets, is presented in Figure 8 This 
figure offers a succinct analysis of both training and validation accuracy, alongside the depic-
tion of training and validation loss. Such visual representations offer valuable insights into the 
model's performance, aiding comprehension of its behavior nuances and facilitating further 
optimization of its architecture. 

 

Figure 8. Accuracy and Loss of the ResNet50 Model during Training and Validation. 

4.4. Visual Geometry Group 2019 (VGG19) Model 

The performance evaluation of the optimized VGG19 model entails thoroughly exam-
ining its accuracy and loss metrics throughout the training and validation phases. Further-
more, Figure 9 illustrates the accuracy and loss of the model on both training and validation 
datasets. These graphical representations highlight the model's efficacy in achieving minimal 
loss values, thus substantiating its potential as a reliable model for applications in healthcare. 

 

Figure 9. Accuracy and Loss of the VGG19 Model during Training and Validation. 

4.5. Evaluation 

In the conducted experiment, MobileNetV2, ConvNet, and VGG19 demonstrated the 
highest performance, achieving accuracies of 97.99%, 96.43%, and 96.43%, respectively. Sub-
sequently, the models were evaluated with test data utilizing Keras's built-in model evaluator, 
which provided insights into accuracy and loss functions. Notably, MobileNetV2 exhibited 
the highest accuracy of 97.42% during this evaluation phase, prompting its selection for inte-
gration into the telediagnosis web application. The training, validation, and evaluation scores 
of the DNN models are summarized in Table 1. 

Further assessment of the chosen MobileNetV2 model using test data yielded a test ac-
curacy of 97%, along with macro-average precision, recall, and F1-score of 97%, 96%, and 
96%, respectively. The detailed classification report of the best and selected MobileNetV2 
model is depicted in Figure 10. Additionally, Figure 11 illustrates the confusion metrics asso-
ciated with the chosen model. 
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Table 1. Accuracy and Loss of different DNN models in various states. 

Metrics States MobileNetV2 ConvNet VGG19 ResNet50 

Accuracy 

Training 0.9312 0.8939 0.9488 0.7151 

Validation 0.9799 0.9643 0.9643 0.8237 

Evaluation 0.9742 0.9128 09613 0.8526 

Loss 

Training 0.7753 0.2799 0.1577 2.4317 

Validation 0.1792 0.1282 0.1184 0.1054 

Evaluation 0.2351 0.2309 0.099 0.8412 

 

Figure 10. Classification Report of the Best Performing (MobileNetV2) Model. 

 

Figure 11. Confusion Matrix of the Best Performing (MobileNetV2) Model. 

Based on the results above, MobileNetV2 shows superiority over other models such as 
ConvNet and VGG19, although VGG19 has better training accuracy, MobileNetV2 has more 
consistent performance between training and evaluation. Apart from that, looking at the data 
in the confusion matrix, it appears that the dataset is not balanced, so we need to pay attention 
to the recall, precision, and f1 measurements. It can be seen that the values of accuracy, recall, 
precision, and f1 are relatively equal in the unbalanced dataset. In theory, MobileNetV2 also 
features a lighter and more efficient architectural design, which is important for real-time 
applications such as telediagnosis. MobileNetV2 uses fewer and more efficient convolution 
operations, enabling faster image processing without requiring large computing resources. 
This makes it more practical to apply to web-based systems that require fast and accurate 
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responses. Additionally, MobileNetV2's efficiency in managing test data shows that the model 
is better at generalizing learning from training data to real situations, an important aspect of 
medical diagnostic applications. 

4.6. Comparison 

Table 2 provides a comparative analysis between the methodology employed in this 
study and recent related works, emphasizing the robustness of MobileNetV2. This compari-
son underscores the potential of the optimized model to address various practical applications 
by consistently delivering reliable and accurate predictions. 

Table 2. Comparative study on test accuracy with recent related works. 

Algorithms Dataset Accuracy 

You Only Look Once (YOLO) V4[3] ALL-IDB1 96.06% 

Alex Krizhevsky Network (AlexNet) 

Dense Convolutional Network (DenseNet)121 

Residual Neural Network (ResNet) 18 

Visual Geometry Group (VGG) 16 

SqueezeNet 

MobileNet V2 [5] 

ISBI C-NMC 2019 

89.40% 

86.90% 

91.70% 

92.40% 

93.20% 

95.80% 

Residual Neural Network (ResNet) 101 

Residual Neural Network (ResNet) 5 

Residual Neural Network (ResNet) 50 

Ensembling ResNets [13] 

Shanghai Children's Medical 
Center (SCMC) 

81.49% 

79.82% 

80.73% 

82.93% 

GoogleNet 

Convolutional Neural Network [20] 

The American 

Society of Hematology 

96.06% 

94.69% 

LeNet [21] Bone Marrow Laboratory of 
Taleqani Hospital, Iran 

95.75% 

Method of this paper Bone Marrow Laboratory of 
Taleqani Hospital, Iran 

97.00% 

 
The method proposed in this study achieved a high accuracy of 97.00% on the dataset 

from the Bone Marrow Laboratory of Taleqani Hospital, Iran, one of the highest accuracies 
among various algorithms and datasets in related studies. This shows the method's effective-
ness in overcoming challenges in recognizing Acute Lymphoblastic Leukemia (ALL) from 
microscopic images. Although tested on different datasets, this high accuracy indicates the 
adaptability and generalizability of the method, which is very important in medical diagnostic 
applications. This shows that the approach can take advantage of recent advances in deep 
learning technology to improve accuracy and reliability in medical diagnosis, especially in clas-
sifying leukemia subtypes. 

5. Conclusions 

The severity of ALL has resulted in a growing number of fatalities, while survivors are 
left with reduced vitality. Despite the increasing use of AI-based intelligent systems for diag-
nosing this disease, numerous challenges remain, mainly due to ALL blast cells' varied pat-
terns, shapes, and textures. In light of this, we have designed and optimized multi-DNN 
models and a tele-diagnostic web app to provide efficient diagnosis assistance. This is a critical 
step in the fight against ALL to ensure accessible and affordable healthcare. While many re-
searchers have attempted to apply DNNs to detect ALL Leukemia, a comprehensive ap-
proach and generalized model are still lacking. Thus, we plan to develop a robust methodol-
ogy capable of performing image analysis tasks, including identifying regions of interest and 
approximating blast cell counts, which a broad class will implement in the future. 
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