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Abstract: This study explores the utilization of LightGBM, a gradient-boosting framework, to classify 

the inhibitory activity of beta-secretase 1 inhibitors, addressing the challenges of Alzheimer's disease 

drug discovery. The study aims to enhance classification performance by focusing on overcoming the 

limitations of traditional statistical models and conventional machine-learning techniques in handling 

complex molecular datasets. By sourcing a dataset of 7298 compounds from the ChEMBL database 

and calculating molecular descriptors for each compound as features, we employed LightGBM in 

conjunction with a set of carefully selected molecular descriptors to achieve a nuanced analysis of 

compound activities. The model's efficiency was benchmarked against traditional machine-learning 

algorithms, revealing LightGBM's superior accuracy (84.93%), precision (87.14%), sensitivity (89.93%), 

specificity (77.63%), and F1-score (88.17%) in classifying beta-secretase 1 inhibitor activity. The study 

underscores the critical role of molecular descriptors in understanding drug efficacy, highlighting 

LightGBM's potential in streamlining the virtual screening process. Conclusively, the findings advocate 

for LightGBM's adoption in computational drug discovery, offering a promising avenue for advancing 

Alzheimer's disease therapeutic development by facilitating the identification of potential drug 

candidates with enhanced precision and reliability. 
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1. Introduction 

Alzheimer's disease is a devastating neurodegenerative disorder characterized by 
progressive cognitive decline, memory loss, and impaired daily functioning [1]. It affects 
millions of individuals worldwide, and its prevalence is expected to rise significantly as the 
global population ages [2]. The pathological hallmarks of Alzheimer's disease include the 
accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, which are 
believed to contribute to the disease's progression [3]. 

Beta-secretase 1 also known as β-site amyloid precursor protein cleaving enzyme 1, is 
crucial in producing Aβ peptides [4], [5]. Inhibition of beta-secretase 1 has emerged as a 
promising therapeutic strategy for Alzheimer's disease, potentially reducing Aβ production 
and slowing down the disease's progression [6]. Consequently, developing effective beta-
secretase 1 inhibitors has become a focal point in Alzheimer's disease research. 

Classification of the inhibitory activity of compounds is crucial in drug discovery and 
development [7]. Accurate classification is essential to prioritize compounds for further 
investigation, ultimately leading to the identification of potential drug candidates [8]. 
However, the classification challenge is non-trivial, given the extensive chemical diversity of 
potential inhibitors and the need to achieve a delicate sensitivity-specificity balance [9]. 
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In recent years, there has been a significant leap forward in leveraging machine-learning 
techniques to address the challenges in drug discovery [10]–[12]. Machine-learning models 
can analyze vast chemical datasets, classify compound activities, and streamline the 
identification of potential drug candidates [13]–[16]. Moreover, the integration of machine-
learning in drug discovery extends to Quantitative Structure-Activity Relationship (QSAR) 
modeling. Machine-learning models harness molecular descriptors as features, enabling a 
more comprehensive analysis of chemical structures and their activities [17], [18]. This 
approach enhances the accuracy of classification, expedites the identification of promising 
drug candidates, and revolutionizes the efficiency of the drug discovery process. 

Current methodologies for classifying beta-secretase 1 inhibitors predominantly lean on 
traditional statistical models and conventional machine-learning techniques [19], [20]. While 
these approaches have yielded foundational insights, they frequently encounter limitations 
when confronted with high-dimensional data and the intricate nonlinear relationships 
inherent in molecular datasets. The complexity of molecular interactions often surpasses the 
capabilities of these methods, leading to incomplete understanding and potentially missed 
opportunities for identifying novel inhibitors [21]. As a result, there's a growing recognition 
within the scientific community of the need to explore more advanced methodologies capable 
of handling the intricacies of molecular data. 

One promising method to address these limitations is the application of LightGBM 
(Light Gradient Boosting Machine). LightGBM is an advanced gradient boosting framework 
that is designed to be efficient, flexible, and powerful [22]. It stands out for its ability to handle 
large-scale data and efficiently manage high-dimensional spaces typical of molecular datasets 
[23]. Notably, it can handle imbalanced data effectively [24], which is a common issue in 
classifying potential drug inhibitors [25]. This capability helps prevent biased classifications 
toward the majority class. LightGBM addresses this challenge by implementing weighted 
sampling and gradient-based one-side sampling techniques, ensuring that the model pays 
more attention to underrepresented classes. This capability is important for accurately 
identifying potent beta-secretase 1 inhibitors, where the number of effective compounds may 
be relatively small compared to non-inhibitors. 

Moreover, LightGBM's histogram-based algorithm represents a significant 
improvement over conventional methods by reducing memory usage and accelerating the 
learning process [22]. This makes it particularly suitable for classifying beta-secretase 1 
inhibitors, as it can effectively capture complex nonlinear relationships without compromising 
on computational efficiency or accuracy, even in the presence of data imbalance. In contrast, 
traditional models often encounter difficulties with the non-linearity and complexity inherent 
in these datasets, potentially overlooking subtle yet critical patterns essential for identifying 
novel inhibitors. 

This study aims to utilize LightGBM's robust capabilities to significantly enhance the 
classification performance of beta-secretase 1 inhibitors, addressing the limitations of 
traditional statistical models and conventional machine-learning techniques. Molecular 
datasets pose challenges such as high dimensionality and complex nonlinear relationships, 
which LightGBM is well-equipped to handle. Renowned for its efficiency, accuracy, and 
ability to process large-scale data using tree-based learning algorithms, LightGBM offers a 
promising solution. By leveraging these strengths, this research endeavors to improve the 
accuracy and reliability of classifying the inhibitory activity of beta-secretase 1 inhibitors, 
facilitating the identification of potential drug candidates for Alzheimer's disease therapy. 

The contributions of this study encompass several key aspects aimed at advancing the 
field of drug discovery with machine-learning for Alzheimer's disease therapy. These 
contributions include: 
1. Introduction of LightGBM as an innovative tool for classifying beta-secretase 1 inhibitor 

activity. 
2. Implementation of hyperparameter tuning to optimize the performance of the 

LightGBM model. 
3. Analysis of feature importance influencing beta-secretase 1 inhibitor classification. 
4. Establishing a benchmark, evaluating the LightGBM model using metrics such as 

accuracy, precision, sensitivity, specificity, and F1-score. 
5. Advancement of drug discovery strategies targeting Alzheimer's disease. 
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2. Related Works 
Early endeavors to classify beta-secretase 1 inhibitor activity predominantly relied on 

experimental screening and structure-activity relationship studies [26]. These approaches 
involved synthesizing and testing chemical compounds against beta-secretase 1 to assess their 
inhibitory effects. While providing valuable insights, traditional methods are resource-
intensive, time-consuming, and limited in their ability to analyze large chemical libraries 
comprehensively. 

In recent years, machine-learning techniques have emerged as powerful tools for 
classifying beta-secretase 1 inhibitor activity, significantly improving efficiency and accuracy. 
Several studies have explored the application of various machine-learning algorithms. In their 
study, Ponzoni et al. [27] utilized a combination of neural networks and random forests to 
identify potential inhibitors of the beta-secretase 1 protein, employing classification methods 
for model development. Their approach involved utilizing a database containing 215 
molecules to train and validate the classification models. 

In the study by Nugroho et al. [28], they employed a neural network model to classify 
beta-secretase 1 activity for a dataset comprising 1531 compounds. They employed three 
optimization strategies to optimize the neural network: the Bat Algorithm, the Hybrid Bat 
Algorithm, and the Adaptive Bat Algorithm. The optimized model demonstrated an accuracy 
of 0.81 and an F1-score of 0.78, indicating its effectiveness in accurately classifying beta-
secretase 1 activity. 

Our previous study [19] explored the efficacy of four machine-learning models - 
Random Forest, AdaBoost, Gradient Boosting, and Extra Trees - for classifying beta-
secretase 1 inhibitor activity. Among these models, Random Forest emerged as the top 
performer, demonstrating a testing accuracy of 82.53%. Notably, Random Forest exhibited 
superior precision, recall, and F1-score compared to the other models evaluated. These 
findings underscore the effectiveness of Random Forest in accurately classifying beta-
secretase 1 inhibitor activity, highlighting its potential for advancing Alzheimer's disease drug 
discovery efforts. 

While previous studies have made significant strides in classifying beta-secretase 1 
inhibitor activity using various machine-learning techniques, there remains a gap in adopting 
more recent and advanced methodologies. Leveraging the latest advancements in machine-
learning, particularly LightGBM, offers an opportunity to enhance classification models' 
efficiency, accuracy, and scalability for Alzheimer's disease drug discovery. By employing 
LightGBM, we aim to address this gap and further refine the classification of beta-secretase 
1 inhibitor activity, ultimately advancing the development of potential therapeutics for 
Alzheimer's disease. 

3. Proposed Method 

The workflow of our proposed approach is shown in Figure 1, encompassing three main 
steps: initial data preparation, followed by the model building phase utilizing LightGBM, and 
concluding with the evaluation of the model's performance in classifying beta-secretase 1 
inhibitors. 

3.1. Data Preparation 

A total of 7298 compound data was obtained from the ChEMBL database, a 
comprehensive resource for chemical and biological data [29]. We defined class labels based 
on the IC50 values to create a binary classification task. Compounds with IC50 values below 
1000 nM were designated "active," totaling 4,574 compounds. Conversely, 2,724 compounds 
were labeled as "inactive" due to their IC50 values equal to or exceeding 1000 nM. These class 
labels form the basis of our subsequent analysis [30]. 

Next, we calculated a set of molecular descriptors for each compound in the dataset 
using the Mordred [31]. Molecular descriptors are numerical representations of a compound's 
chemical and structural properties, providing valuable information for machine-learning 
models [32]. These descriptors capture a wide array of chemical information, ranging from 
simple constitutional properties, such as molecular weight and number of bonds, to more 
complex 3D molecular geometries and electronic properties. They enable the translation of 
chemical compounds into a numerical format that machine-learning algorithms can readily 
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analyze, facilitating the identification of patterns and relationships that are not easily 
discernible through traditional chemical analysis methods. 

 

Figure 1. The proposed approach 

In the preprocessing phase, we performed a rigorous filtering process to ensure that the 
selected descriptors were informative and did not introduce multicollinearity issues. 
Descriptors exhibiting zero variance across the dataset were removed, as they do not 
contribute to discrimination between active and inactive compounds. Additionally, we applied 
a threshold of 0.95 for multicollinearity, removing descriptors that were highly correlated with 
each other [33]. This step aimed to retain only the most relevant and non-redundant 
descriptors for our classification task. After applying the filtering criteria, we arrived at a final 
set of 456 molecular descriptors for each compound. 

The dataset was then stratified and split into a training set (80%) and a testing set (20%). 
The distribution of data and class for each subset is shown in Table 1. It can be observed that 
the number of inactive compounds is higher than that of active compounds. This 
stratification ensures that both the training and testing sets have a proportionate 
representation of each class, which is crucial for maintaining the integrity of the model's 
performance across different data samples. It is particularly important to accurately classify 
the active compounds to ensure the effectiveness and cost-efficiency of drug screening before 
proceeding to laboratory validation. 

Table 1. Hyperparameter space for LightGBM 

Subset Inactive Class Active Class 

Training Set 3655 2183 

Testing Set 919 541 

3.2. Model Building 

The LightGBM training process involved a fine-tuning step to enhance its classification 
performance. We employed a random search approach with 10-fold cross-validation for this 
purpose. This method enables efficient exploration of the hyperparameter space, including 
parameters such as maximum depth, learning rate, subsample ratio, column subsample ratio, 
L1 regularization term (reg alpha), and L2 regularization term (reg lambda). The random state 
parameter was consistently set to 42 throughout the experiments to maintain reproducibility. 
The hyperparameter space explored is detailed in Table 2. 
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Table 2. Hyperparameter space for LightGBM 

Hyperparameter Description Range 

max_depth Maximum depth of the tree 3 - 51 

learning_rate Learning rate for boosting 0.01-0.2 

subsample 
Subsample ratio of the training 

instance 
0.6-1.0 

colsample_bytree 
Subsample ratio of columns 
when constructing each tree 

0.6-1.0 

reg_alpha L1 regularization term 0.0-1.0 

reg_lambda L2 regularization term 0.0-1.0 

 

3.3. Model Evaluation 

To comprehensively evaluate model performance, we consider a set of metrics, including 
accuracy, precision, sensitivity, specificity, and F1-score. Accuracy gauges the overall 
correctness of our classifications, while precision measures the accuracy of positive 
classifications. Sensitivity quantifies the model's ability to capture all positive instances, and 
the F1-score balances precision and recall. These metrics ensure a thorough assessment of 
our model's ability to accurately classify beta-secretase 1 inhibitor activity, enabling us to 
identify the optimal model configuration for our research objectives. The equations for 
accuracy, precision, sensitivity, specificity, and F1-score are presented in Equations (1)-(5). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝐹𝑁

𝐹𝑃 +  𝐹𝑁 +  𝑇𝑃 +  𝑇𝑁
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃 

𝑇𝑃 +  𝐹𝑃
 (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃 

𝑇𝑃 +  𝐹𝑁
 (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁 

𝑇𝑁 +  𝐹𝑃
 (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

We further compared the performance of our proposed approach with six other 
machine-learning algorithms: Random Forest, Support Vector Machine, Logistic Regression, 
Naïve Bayesian, Neural Network and XGBoost to evaluate its effectiveness in classifying 
beta-secretase 1 inhibitor activity. 

4. Results and Discussion 

The LightGBM model has been trained using specific hyperparameters to optimize its 
performance. These include a maximum depth of 41, a learning rate of 0.2, a subsample ratio 
of 1.0, a column subsample ratio of 1.0, L1 regularization (reg alpha) of 0.0, and L2 
regularization (reg lambda) of 1.0. Based on these hyperparameters, the trained LightGBM 
model exhibits several characteristics. A large maximum depth value indicates that the model 
can capture complex relationships within the data, potentially leading to a higher capacity for 
learning intricate patterns. The relatively high learning rate suggests that the model adapts 
quickly to new information during training. The subsample ratio value indicates that all 
training instances are used for each tree, meaning no subsampling exists. The column 
subsample ratio value means all features are considered for splitting at each node. The L1 
regularization term value indicates that there's no additional penalty for large coefficients, and 
the L2 regularization term value indicates a balanced approach to controlling overfitting. 

The performance of the LightGBM model and its comparison with other machine-
learning models are illustrated in Table 3. The LightGBM model achieved an accuracy of 
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84.93%, a precision of 87.14%, a sensitivity of 89.93%, a specificity of 77.63%, and an F1-
score of 88.17%. These results underscore the robustness of the LightGBM model, especially 
in the F1-score, which translates to its ability to classify compounds into active and inactive 
categories accurately. While the Random Forest model shows a superior recall rate, indicating 
its strength in identifying active compounds, the LightGBM model demonstrates a more 
balanced performance. This balance is crucial in applications such as drug discovery, where 
accurate classification of compounds streamlines the virtual screening process. 

Table 3. Performance of machine-learning models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-Score 
(%) 

LightGBM 84.93 87.14 89.93 77.63 88.17 

Random Forest 82.19 81.47 92.82 64.14 86.78 

Support Vector Machine 82.12 84.20 88.14 71.90 86.12 

Logistic Regression 81.23 83.28 87.81 70.86 85.49 

Naïve Bayesian 75.00 76.18 87.70 53.42 81.54 

Neural Network 83.49 85.61 88.68 74.68 87.12 

XGBoost 84.93 86.79 88.68 77.08 87.73 

Bold values indicate best results 

Table 4. Confusion matrix of machine-learning models 

Model Actual 
Predicted 

Active Inactive 

LightGBM 
Active 820 99 

Inactive 121 420 

Random Forest 
Active 853 66 

Inactive 194 347 

Support Vector Machine 
Active 810 109 

Inactive 152 389 

Logistic Regression 
Active 807 112 

Inactive 162 379 

Naïve Bayesian 
Active 806 113 

Inactive 252 289 

Neural Network 
Active 815 104 

Inactive 137 404 

XGBoost Active 815 104 

 Inactive 124 417 

The confusion matrix table depicting the performance of various machine-learning 
models, including LightGBM, Random Forest, Support Vector Machine, Logistic Regression, 
Naïve Bayesian, Neural Network, and XGBoost, in classifying the activity of beta-secretase 1 
inhibitors is shown in Table 4. Specifically focusing on the LightGBM model, it correctly 
classified 820 active and 420 inactive compounds while misclassifying 99 active and 121 
inactive compounds. Comparatively, the Random Forest model achieved higher accuracy in 
classifying active compounds but exhibited lower accuracy in classifying inactive compounds. 
This disparity resulted in a less balanced performance, as evidenced by the higher false positive 
and false negative rates. In contrast, the LightGBM model demonstrated a more balanced 
performance, achieving a higher F1-score, which signifies a better trade-off between precision 
and recall. 

This balanced performance is crucial in drug discovery scenarios, where accurately 
identifying both inactive and active compounds is essential for streamlining the virtual 
screening process and identifying potential drug candidates effectively. In this domain, 
achieving an optimal balance between recall and specificity is important for ensuring efficiency 
and cost-effectiveness in laboratory experiments. Specifically, false positives can lead to costly 
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and time-consuming experimental validation processes, making specificity a crucial metric. On 
the other hand, false negatives may result in overlooking potentially promising drug 
candidates. Given these considerations, we utilized the F1-score as our primary evaluation 
metric. The F1-score provides a balanced measure of both precision and recall, which aligns 
well with our objectives of maximizing the overall accuracy of our drug screening process 
while minimizing the risk of false positives and false negatives. 

The Receiver Operating Characteristic (ROC) curves for the various machine-learning 
models evaluated in this study are shown in Figure 2. The ROC curve represents the true 
positive rate (sensitivity) against the false positive rate (1 - specificity) for different 
classification thresholds. Essentially, it illustrates the trade-off between sensitivity and 
specificity across different threshold values. In this context, a higher area under the ROC curve 
(AUC) indicates better overall performance of the model in distinguishing between true 
positive and false positive cases. It is evident that the ROC curve for the LightGBM model 
exhibits the highest AUC value, measuring at 0.91. This signifies that the LightGBM model 
outperforms the other machine-learning models in terms of its ability to accurately classify 
beta-secretase 1 inhibitors, achieving a superior balance between sensitivity and specificity. 

 

Figure 2. ROC plot of machine-learning models 

For further analysis, we visualized the top five most important molecular descriptors in 
the LightGBM model to understand the LightGBM model's decision-making process for 
classifying beta-secretase 1 inhibitor activity (Figure 3). This LightGBM model uses a split 
feature importance method, which measures the importance of a feature by counting the 
number of times the feature is used in a model's decision trees. The most important descriptor 
appears to be PEOE_VSA8, which pertains to a specific atom type's steric and electronic 
environment and its impact on molecular interactions with beta-secretase 1. Following this, 
ATSC8dv is a topological autocorrelation descriptor that highlights the molecule’s shape and 
connectivity, suggesting its influence on binding affinity. Similarly, ATSC8Z accounts for the 
atomic number influences of atom type 8, reflecting the role of elemental composition. IC2 
measures the informational complexity of the molecular structure, indicating a nuanced aspect 
of molecular diversity. Lastly, ATSC8se brings attention to specific electronic properties, 
which could affect how a molecule interacts with the target site. These descriptors collectively 
contribute to the model’s effectiveness in identifying potential inhibitors, with each descriptor 
providing a unique piece of the puzzle in understanding molecular activity against beta-
secretase 1. 

The empirical evidence presented highlights the effectiveness of the LightGBM model 
in identifying beta-secretase 1 inhibitors, demonstrating well-tuned hyperparameters and 
emphasizing the significant role of molecular descriptors in classifying drug efficacy. With its 
remarkable accuracy, precision, and balanced performance metrics compared to alternative 
models, LightGBM emerges as a valuable asset in the drug discovery toolkit. Examining the 
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importance of features has yielded additional insights into the essential molecular 
characteristics crucial for inhibitor binding, offering valuable guidance for enhancing virtual 
screening and drug design strategies. 

 

Figure 3. Feature importance of the LightGBM model 

5. Conclusions 

The study conducted with the LightGBM model has demonstrated its efficacy in 
classifying the activity of beta-secretase 1 inhibitors, marking a significant advancement in the 
field of computational drug discovery. The main findings reveal that the model, through its 
optimal hyperparameter settings, yields high accuracy, precision, specificity, and a balanced 
F1-score, which aligns with the research objectives to improve virtual screening processes. 
The relationship between the top molecular descriptors and inhibitor activity provides a 
deeper understanding of the drug-binding mechanisms. While the results are promising, the 
limitations in molecular descriptors' scope call for further research to explore additional 
properties and external validation with larger datasets to generalize the findings. This study 
paves the way for future investigations that could expand the utility of machine-learning in 
drug development, potentially leading to more targeted and effective treatments for diseases 
like Alzheimer's. 
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