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Abstract: Integrating deep learning methodologies is pivotal in shaping the continuous evolution of 

computer-aided design (CAD) and computer-aided engineering (CAE) systems. This review explores 

the integration of deep learning in CAD and CAE, particularly focusing on generative models for sim-

ulating 3D vehicle wheels. It highlights the challenges of traditional CAD/CAE, such as manual design 

and simulation limitations, and proposes deep learning, especially generative models, as a solution. The 

study aims to automate and enhance 3D vehicle wheel design, improve CAE simulations, predict me-

chanical characteristics, and optimize performance metrics. It employs deep learning architectures like 

variational autoencoders (VAEs), convolutional neural networks (CNNs), and generative adversarial 

networks (GANs) to learn from diverse 3D wheel designs and generate optimized solutions. The an-

ticipated outcomes include more efficient design processes, improved simulation accuracy, and adapt-

able design solutions, facilitating the integration of deep learning models into existing CAD/CAE sys-

tems. This integration is expected to transform design and engineering practices by offering insights 

into the potential of these technologies. 

Keywords: 3D Vehicle Wheels; Artificial Intelligence; Computer-Aided Design (CAD); Computer-

Aided Engineering (CAE); Deep Learning; Generative Models. 

 

1. Introduction 

Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) have under-
gone significant transformations in recent years, driven by advancements in computational 
capabilities and the demand for more sophisticated design solutions. Traditionally, CAD sys-
tems have relied on manual inputs and iterative processes, leading to time-intensive design 
workflows. Meanwhile, CAE systems face challenges in accurately simulating complex me-
chanical components, particularly evident in the intricate nature of 3D vehicle wheel designs. 
The need for efficient, automated design processes and precise simulations has prompted 
researchers and practitioners to explore cutting-edge technologies, with deep learning emerg-
ing as a promising frontier. Deep learning, a subset of artificial intelligence (AI) characterized 
by neural networks with multiple layers, has demonstrated remarkable capabilities in pattern 
recognition, optimization, and generative tasks. Integrating deep learning can revolutionize 
design methodologies and enhance simulation accuracy within the realm of CAD and CAE. 
The complexity of 3D vehicle wheel simulations presents a special opportunity for generative 
models, such as variational autoencoders (VAEs) and generative adversarial networks 
(GANs), which have demonstrated proficiency in automating the production of complicated 
designs [1]. While previous studies have explored aspects of deep learning in CAD/CAE, 
there is a distinct gap in the literature concerning a comprehensive review focused on imple-
menting generative models for 3D vehicle wheel simulations. Existing methodologies often 
lack specificity to complex mechanical components, and a consolidated analysis of the state-
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of-the-art techniques, challenges, and potential solutions in this context is notably absent [2]–
[6].  

The dynamic evolution of technology has pushed Computer-Aided Design (CAD) and 
Computer-Aided Engineering (CAE) to unprecedented heights. Integrating deep learning 
transforms design processes. From conceptualization [7]–[10], CAD builds virtual prototypes 
[11], while CAE verifies performance, prompting design adjustments. Integrating CAD and 
CAE systems is crucial in today's collaborative design environment. The existing wheel design 
process faces inefficiencies and limits in concept engineering [12]–[14]. Addressing these chal-
lenges, this study introduces a deep learning-based generative design framework facilitating 
joint reviews by designers and engineers for detailed design advancement [15]. This project 
extensively explores the convergence of CAD, CAE, and deep learning, emphasizing the 
transformative role of generative models in simulating 3D vehicle wheels. While foundational, 
traditional CAD/CAE systems often encounter challenges in the intricacies of designing and 
simulating complex mechanical components. The manual design processes are time-consum-
ing, and the precision required for accurate simulation, especially in the context of 3D vehicle 
wheels, remains a substantial hurdle. However, it is also important to harness the capabilities 
of deep learning, particularly emphasizing generative models. By doing so, we aspire to not 
only revolutionize the design processes but also redefine the parameters for accurate and 
efficient CAE simulations [7], [16], [17]. Simultaneously, our research endeavors to augment 
CAE simulations, utilizing deep learning techniques to predict mechanical properties and op-
timize performance metrics tailored explicitly for 3D vehicle wheels. The utilized approach 
explores several deep learning architectures, including convolutional neural networks, varia-
tional autoencoders (VAEs), and generative adversarial networks (GANs) (CNNs). Empow-
ering these models involves training on extensive datasets featuring varied 3D wheel designs 
paired with corresponding simulation data. This ensures models learn from diverse designs, 
proficiently generating optimized solutions. Beyond academic achievements, our expectations 
encompass a streamlined generative design process, heightened simulation accuracy, and the 
creation of adaptable design solutions for diverse optimization goals. Our commitment ex-
tends to practically integrating these advancements into existing CAD/CAE systems, bridging 
the theoretical-innovation-real-world-engineering gap. 

This review's limitation in/out-sight may not encompass every aspect of generative mod-
els or 3D vehicle wheel design due to time and resource constraints, certain methodologies, 
applications, or emerging technologies [14], [17]. The quality and availability of data sources 
may impact the depth and reliability or work, limited access to certain datasets or discrepan-
cies in data quality could affect the generalizability of findings for CAD/CAE systems, the 
rapidly evolving nature of generative modeling techniques and 3D design technologies means 
that new methodologies or advancements may have emerged since the completion of this 
review. [18] While the integration of generative models in 3D vehicle wheel design holds 
promise, practical implementation may encounter various challenges, such as technical con-
straints, compatibility issues with existing design software, or limitations in computational 
resources required for complex modeling tasks[19], [20]. Various reviews and research have 
been done, and despite efforts to maintain objectivity, reviewer biases or subjective interpre-
tations may influence the analysis and synthesis of research findings. Additionally, the selec-
tion of studies or methodologies included in the review may introduce inherent biases based 
on the reviewers' perspectives or preferences. In essence, this review review seeks to illumi-
nate the current landscape of CAD/CAE systems in the following; To contribute not only to 
the academic discourse but also to the broader realms of design and engineering, ushering in 
a new era of efficiency, innovation, and precision in the realm of complex mechanical design 
and simulation. Exploring the integration of deep learning into traditional CAD/CAE system, 
and specifically, the transformative potential of generative models in the simulation of 3D 
vehicle wheels. Also, to bridge this gap, an in-depth examination of how deep learning, and 
specifically generative models, can be harnessed to propel advancements in CAD/CAE sys-
tems will be conducted, with a specialized focus on 3D vehicle wheel simulations. A potential 
limitation of the research topic could be the lack of publicly available datasets for training and 
evaluating generative models. While there are a number of publicly available datasets for 3D 
object generation, there may not be enough specifically designed for vehicle wheels. In addi-
tion, the diversity of vehicle wheels may make it difficult to create a dataset that is representa-
tive of the real world. This could limit the ability to generate realistic 3D vehicle wheels that 
represent the diversity seen in the real world. 
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This research is organized as follows: Section 2 presents Computer-Aided Design (CAD) 
and deep learning. Section 3 presents describes the overview of CAD/CAE. Section 4 pre-
sents the 3D vehicle wheel under real-world conditions with deep learning, and Section 5 
concludes the future work of the study.  

2. Computer-Aided Design (CAD) and Deep Learning 

2.1. Generative Designs 

Generative design is an AI-based product design method using algorithms to produce 
many design alternatives depending on a set of input parameters [21], [22]. This approach can 
be particularly useful in the design of complex 3D models such as wheels. For example, re-
searchers at the University of Illinois developed an AI-based generative design system for 
automotive wheels. This system used a combination of genetic algorithms and finite element 
analysis to generate optimized designs that met specific performance criteria. Study [23] is 
credited with starting generative design research in the early 1970s. According the 1970s saw 
the development of design algorithms that mimicked nature. Significant research delved into 
generative models after the introduction of parametric CAD tools in 1989. Beyond research, 
generative design applies to various manufacturing sectors, including automotive, aerospace, 
and construction. The ultimate aim of generative design has been outlined in a number of 
studies, with a focus on creating spatially inventive, practical, and efficient techniques using 
existing manufacturing and computational capabilities. According to [24], the primary objec-
tive of generative design is to expand the design space. During the conceptual design stage, 
generative design may present initial designs that designers hadn't considered, offering fresh 
inspiration [11]. 

In essence, generative design refers to any computational model employed for design 
investigation. Described as a designer-inspired, parameter-constrained design exploration 
process, it operates atop background-based parameterized drafting programs tailored to fa-
cilitate design as an evolving process. Through the parametric representation of design mor-
phology and result screening, we can condense a vast design space into more manageable 
sectors, incorporating limitations such as geometric viability, manufacturing capabilities, cost, 
and performance considerations [11], [15]. Swarm artificial intelligence, form grammars, L-
systems, evolutionary algorithms, and cellular automated systems are a few study methodol-
ogies. Generative design is described as the automatic investigation of design under predeter-
mined restrictions. Generative design can present preliminary designs throughout the con-
ceptual design stage, providing new ideas. Conventional generative design uses exploratory 
methods to manage feasible shape changes through parametric control and produces a large 
number of designs using genetic algorithms (GAs). 

2.2 Generative Models for 3D Vehicle Wheels 

In this study, GANs are applied to generate 3D models of vehicle wheels [25]. Trained 
on extensive datasets of existing wheel designs, the models acquire intricate details and styles 
unique to different wheel types. The generative model then produces entirely new, custom-
ized wheel designs while complying with industry standards and safety regulations [26]. Build-
ing on the findings from the study [27], for design exploration, integrated topology optimiza-
tion yielded a new design comparable to the reference, overcoming low compliance through 
topology optimization applied to an older design (the connection). Research [3] suggested 
using boundary equivalent GAN learning for iterative design exploration to develop a new 
reference design. In contrast to studies using bracket designs, this approach excels in gener-
ating authentic product designs from a reference design, as demonstrated in the design of 
vehicle wheels. To extend the 3D wheel CAD/computer-aided engineering process for in-
dustrial applications [28] built upon the work of [20]. Study [28] succinctly articulates the 
concept of exploring diverse designs through topology optimization. The initial step involves 
searching for other local optima for the same issue, utilizing different starting designs, opti-
mizers, and filtering techniques [29], [30]. While the industry rebrands topology optimization 
as "generative design" and provides CAD tools employing it for design exploration, deep 
learning is currently lacking in its incorporation into these tools. Ongoing research is explor-
ing the potential of deep learning to enhance the performance of topology optimization-based 
generative design in design exploration [15], [28], [31]. Studies [32], [33] employed 
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convolution filters of deep belief networks and reduced-order models to generate various 
topology designs. In research [34], proposed generative design based on reinforcement learn-
ing eliminates the need for preoptimized topological iteration. 

   

Figure 1. Data (Image) Processing of Rim to 3D Vehicle Wheel  

2.3 Generative Models for 3D Vehicle Wheels 

Generative design algorithms optimize structures by iteratively removing material that is 
not structurally necessary, resulting in lightweight yet robust designs. The approach in [26] 
aligns to reduce the weight of electric vehicles (EVs) to improve energy efficiency. Reducing 
the weight of vehicles is crucial to increasing efficiency. With the rise of electric vehicles that 
must balance heavy battery systems while achieving useful range, this has become even 
sharper focus [16]. One method is through a technique known as lightweighting. Light-
weighting reduces the overall weight of different parts by using design [35], [36]. Generative 
design is a relatively new approach that sees engineers input design [9] goals such as light-
weight into the software and other parameters such as manufacturing methods and perfor-
mance requirements [37]. Unlike other design methods, generative design does not require a 
starting geometry. The users input the areas that the part must keep and identify which areas 
that material should not enter [4]. Then the performance requirements are inputted; these can 
include constrained areas, forces, and pressures on the part, etc.). Following this, other inputs 
can be added, such as the possible materials and any manufacturing restraint, such as mini-
mum wall thickness or the drill bit size for CNC, etc. [24], [32]. The result of each pass is the 
entry point for the next iteration.  Each step is available for the designer to view, and they 
can modify the constraints to direct the evolution of the design [23]. At the end of the gener-
ative design, they can compare several solutions and decide which one to pursue. A significant 
difference of generative design is that designers can start the process with relatively lean re-
sources. Computations are fast and can significantly influence real-time cutting design process 
times [38]. 

3. Computer-Aided Engineering (CAE) and Deep Learning 

Despite being a well-established technology for over 50 years, computer-aided engineer-
ing is still largely applied in the early stages of product design. It does not have a smooth 
integration across other phases. This paper delves into the application of artificial intelligence 
(AI) and machine learning (ML) in virtual manufacturing and computer-aided engineering 
(CAE), with a focus on deep learning (DL) models and their potential to drastically shorten 
simulation lifecycles in a variety of markets. The democratization of AI/DL for all design 
engineers utilizing CAE necessitates addressing critical success aspects, even as we anticipate 
a sharp increase in deploying these approaches in the years to come. Furthermore, it could 
act as a link between data silos in the actual and virtual worlds of contemporary manufactur-
ing, production, and product creation. [17]. 

3.1. Computer-Aided Engineering (CAE) Automation 

CAE simulation results utilizing the 3D CAD files acquired for the 3D Wheel model. 
This involves using a CAE tool to simulate the vehicle's behavior under various conditions. 
In this work, the modal estimation determined the normal frequency of the lateral feature; 
the outcomes were preserved as information with labels that could be utilized for deep learn-
ing. [39] which was used to perform the CAE. [18], [40]–[43]. 

   

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380


Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Akande, et al. 372 
 

 

3.2. Computer-Aided Engineering (CAE) and Deep Learning Integration 

Topology optimization has been explored through various data-driven approaches facil-
itated by machine learning. Examples include K-means [44]–[46], Support Vector Machine 
(SVM) [12], [21], principal component analysis (PCA) [47]–[49], Gaussian process [4], [8], 
neural networks [38], [50]–[52], and random forests [10], [53]–[55], which have been applied 
in these methodologies. Another study by [12], [49], [56] proposed a generative design ap-
proach for the optimization of lattice structures in 3D printing. The approach used a combi-
nation of CNNs and reinforcement learning to generate lattice structures that met specific 
strength, stiffness, and weight requirements. The study showed that using deep learning in 
generative design can improve the performance of 3D objects while reducing the need for 
manual allowance in the design procedure. AI exhibits remarkable flexibility in adapting to 
changes in viewpoint, facilitated by the visual cortex supporting 3D structure perception [57]. 
Conversely, many computer vision models, learning visual representation from 2D image 
pools, struggle to generalize across novel camera viewpoints. A recent shift in vision archi-
tectures embraces convolution-free structures like visual Transformers, operating on tokens 
derived from image patches. However, as in convolutions, these Transformers lack explicit 
operations for learning viewpoint-agnostic representation. Introducing a 3D Token Repre-
sentation Layer (3DTRL) addresses this by estimating 3D positional information and lever-
aging it for viewpoint-agnostic representations. Key components include a pseudo-depth es-
timator and a learned camera matrix for geometric transformations on tokens, allowing 
3DTRL to recover 3D positional information from 2D patches. Easily integrated into a 
Transformer [15], [58]–[62] in practice. In the context of 3D conceptual wheels, several stud-
ies have explored and enhanced generative design techniques to refine the concept and eval-
uation of wheels. One study by [55] introduces a generative approach for designing and opti-
mizing vehicle wheel structures using a combination of CNNs and genetic algorithms. Ap-
plied to a racing wheel design, it generated diverse designs meeting predefined criteria for 
weight, stiffness, and aerodynamics. The study demonstrates that generative design tech-
niques significantly enhance the efficiency and effectiveness of the wheel design process [63], 
[64]. 

Research [47] introduced a generative design approach aiming to optimize wheel geom-
etry by combining Generative Adversarial Networks (GANs) and reinforcement learning. 
Applied to a mountain bike wheel design, the approach successfully generated designs meet-
ing predefined criteria for strength, stiffness, and weight. The study demonstrated that imple-
menting generative design techniques can enhance wheel performance while minimizing the 
need for manual intervention in the design process. According to [18], the success of auton-
omous vehicles, positioned as the future of transportation solutions, relies heavily on reliable 
perception. Image processing and sensor fusion approaches are thoroughly reviewed in this 
review paper to guarantee vehicle efficiency and safety. This study examines issues in com-
puter vision and machine learning approaches for object identification, recognition, tracking, 
and scene comprehension. These include the need for real-time processing, robustness in 
inclement weather, and the integration of complicated sensor data. 

Knowledge transfer, autoencoder, and convolutional neural networks (CNN) are the 
three main deep learning techniques included in the suggested design. CNN-based object 
detection techniques have drawn a lot of interest because of the tremendous improvements 
that CNNs have made in vision-based applications, especially in traffic monitoring. The re-
markable real-time multi-object identification capability of methods like You Only Look 
Once (YOLO) and its variations have gained popularity in high-resolution traffic surveillance 
settings. [65]. Deep neural networks (DNN) featuring CNNs are widely employed for con-
structing concept models in engineering issues, utilizing supervised learning methodologies. 
CNNs, known for their exceptional ability to detect patterns and shapes, find extensive ap-
plication in sectors where computer vision is pivotal [66]. Convolutional and pooling layers 
are combined in the CNN design, and fully connected layers are built on top. This design 
served as the basis for a model. [32]. To distinguish between different models used for differ-
ent tasks, Convolutional Neural Networks (CNNs) are vital. With hierarchical data features, 
CNNs' basic architecture emulates human visual processing abilities, allowing them to recog-
nize, classify, and interpret environmental information [18]. Deep neural networks (DNNs) 
are commonly utilized for dimensionality reduction in unsupervised learning [33]. With the 
same sizes for the input and output layers in the autoencoder architecture, autoencoders, in 
particular, compress high-dimensional input data into a low-dimensional latent space. When 
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input data is compressed using encoders, decoders restore the latent space to the output data. 
To achieve dimensionality reduction of Computer-Aided Design (CAD) data, we imple-
mented a convolutional autoencoder comprising only convolutional and pooling layers [32], 
[56]. In simulation-based design optimization algorithms, high-quality polygonal meshes are 
often required to represent designs. Unevenly distributed 3D point clouds are difficult to 
mesh because it's an ill-posed problem that will usually require human adjustment and valida-
tion. Researchers have recently used deep neural networks to tackle the mesh rebuilding task 
(DNNs). 

3.3. CAD/CAE- Centric 

A CAD-centric or CAE-centric mechanism can be used to integrate computer-aided 
engineering (CAE) and design (CAD), especially when geometric model optimization is re-
quired. [23]. Still, most recent studies have focused mostly on CAD-centric methodologies. 
The schematic illustration of the CAD-centric and CAE-centric methods, each with a differ-
ent foundation for interaction with CAD/CAE systems, is shown in Figure 2. 

 

 Figure 2. (a) Streamlined CAD-Centric Integration Approach for Linking CAD to CAE (b) 
Streamlined CAE-Centric Integration Approach for Linking CAD to CAE 

The CAD system is the starting point for the CAD-centric approach, which reduces 
dimensionality and simplifies detailed CAD models to make them easier for a CAE system to 
analyze. Study [65] presented an integrated platform that combines CAD and CAE and fea-
tures a Graphical User Interface (GUI) for visualization. Using an integrated environment to 
optimize the design of an automotive engine cylinder, this method starts with the virtual pro-
totype generated by the CAD system [67]. Research [32] created an injection molding design 
support Knowledge Base (KB) system centered around CAD for plastic items. Research [30] 
intended to combine CAD and CAE for high-speed design and manufacturing, with an ana-
lytical system acting as the finish system. Studies [37], [68]–[71] developed an integrated plat-
form that connects CAD and CAE and optimizes the geometric structure of machine tools 
by using a closed-loop pattern from the CAD system. Research [37] created a closed-loop 
framework that works from the CAD to the CAE systems. Study [15] created a framework 
for CAD-based integration that combines Design for Cost and CAE systems to optimize 
product models. [66] designed a gas turbine flow path using an integrated platform for struc-
tural optimization that is CAD-centric and integrates with a CAE system. Studies [68], [72] 
developed an integrated gas turbine component design platform that unites CAD and CAE. 
Model optimization is done using the CAE system after CAD-based parametric modeling. 

(a) 

(b) 
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Figure 3. Flowchart of Closed-loop operational process. 

The foundational design model, which is mostly examined in the CAE system, is where 
the CAE-centric method begins. The CAE system then uses information and measurements 
from the basic design model to forecast the geometry of the product model. After that, the 
CAD system displays this improved model. Studies [9], [38], [73] provide an integrated system 
that combines CAD and CAE with the goal of optimizing product model geometry through 
analysis using the Finite Element Method (FEM). This method starts with a model for CAE 
analysis and ends up with an optimization result for CAD geometry. A comparable emphasis 
is seen in the study conducted by [43], in which a CAE-centric approach optimizes the plastic 
molding process's shape. Study [74], [75] developed a CAD-to-CAE integrated platform fo-
cusing on CAE to enhance vehicle structural design. Studies [23], [59], [76], [77] provide a 
neutral, feedback-controlled file-based CAD - CAE integration platform that optimizes geo-
metric design variables based on feedback from CAE analyses. Studies [24], [64], [77][78] 
support a CAD to CAE digital framework that is focused on CAE to optimize a 5-DOF 
robot joint's design. 

 

Figure 4. CAD/CAE-Centered 
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3.4 CAD/CAE Deep Learning 

Artificial intelligence (AIdeep)'s learning subset, which uses complex neural network ar-
chitectures to extract insights from large amounts of data, has proven incredibly effective in 
various fields. Deep learning applications for computer-aided design (CAD) and computer-
aided engineering (CAE), crucial processes in new product creation, have garnered attention 
recently. Studies [31], [49], [52], [60] integrating deep learning with CAD/CAE is more prac-
tical than other engineering domains because CAD data has been used in many deep learning 
research for tasks like segmentation and classification [46], and the development of metamod-
els in CAE research has long depended on machine learning [20]. During the conceptual 
design stage, a metamodel or surrogate model is essential for quickly evaluating the engineer-
ing performance of multiple design contenders. Deep learning's capacity to accurately imitate 
high-dimensional and nonlinear physics makes it a powerful tool for surrogate modeling in 
CAE research [65], [72] [79]. To effectively use deep learning, engineers must first generate a 
set of CAD models and compile CAE findings, which presents a considerable hurdle. 

Generative design holds the potential to address the problem of scarce data availability. 
Within the designer's given limits, designs are independently explored using this computa-
tional design process [14], [18], [28], [80], [81]. Recent generative design research combines 
deep learning and topology optimization to navigate large design areas efficiently [13], [82], 
[83]. Expanding on the foundation created by [46] to address the 3D wheel design complexity 
in industrial applications, our research on 2D wheel design further extends the deep learning-
based generative design approach, demonstrating its usefulness in the automobile industry. 
Using cutting-edge technologies specifically designed for the conceptual design stage, gener-
ative design and CAD/CAE automation are all smoothly integrated into the suggested 
CAD/CAE framework, powered by deep learning. By using deep learning to automate the 
creation and assessment of 3D CAD data, this approach helps to find workable conceptual 
concepts early in the design process. 

 

Figure 5. Deep CAD/CAE Workflows 

3.5 CAD/CAE Reinforce Learning 

Reinforcement learning (RL) is a machine learning type that involves evaluating an agent 
to make a conclusion based on trial and error in an environment. In the context of CAD/CAE 
systems, RL can be used to optimize the design of 3D objects based on predefined objectives. 
Some previous studies have explored the application of RL in CAD/CAE systems, including 
the design of car components(wheels), airplane wings, and buildings [63]. One study by [84] 
provides a reinforcement learning-based strategy for modeling airfoils using a CAD/CAE 
system. The method involved training an agent to generate airfoils based on the objectives of 
lift and drag coefficients. The study found that the RL-based method effectively generated 
airfoils that met the specified objectives and outperformed traditional optimization methods.  
Another study by [34], [47], [85] introduced an RL-based method for the design of truss me-
chanics using a CAD/CAE system. The method involved training an agent to generate struc-
turally sound truss structures with low mass [2]. The study found that the RL-based method 
effectively generated truss structures that met both objectives and outperformed traditional 
optimization methods. As for the findings of [31], a generative design method rooted in deep 
learning was developed for 2D wheel design. The primary objective of this research is to 
broaden the applicability of the generative design method to address the 3D wheel design 
challenges in industrial settings, showcasing its viability within the automotive industry [86]. 
This study presents an efficient deep learning-based CAD/CAE system that includes ad-
vanced technologies, generative design, and CAD/CAE automation. Specifically designed for 
the conceptual design stage, the suggested framework uses deep learning to automate the 
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creation and assessment of 3D CAD data. Its main goal is finding workable conceptual con-
cepts early in the design process [3], [87]. 

Although RL has demonstrated potential in optimizing the design of 3D objects within 
CAD/CAE systems [54], [63], there are persistent challenges to address, including the sub-
stantial computational cost and the necessity for a well-defined reward function. The issue of 
Scan-to-CAD in CAD models, as highlighted by [57], entails extracting specific B-Rep char-
acteristics from the matching 3D scan or figuring out the design background that made it 
possible. Despite recent progress, this problem is still difficult to solve, especially in practical 
settings where oversimplified assumptions limit the applicability of current solutions. 

3.6 CAE Reinforcement Learning 

In the domain of automotive engineering, the infusion of deep learning-based algorithms 
into CAE marks a transformative shift. Deep learning, a subset of artificial intelligence (AI), 
renowned for its prowess in image and data analysis, natural language processing, and pattern 
recognition, holds the potential to revolutionize CAE practices [33], [57]. Extending these 
capabilities to the specific domain of CAE, especially in simulating 3D vehicle wheels, prom-
ises unparalleled accuracy and efficiency. Manufacturers must implement strong systems-de-
sign procedures that can successfully negotiate the complexities of creating multidisciplinary 
systems in order to meet the demands of expediting product releases and minimizing costs. 
At the heart of this development process lies the utilization of high-fidelity virtual prototypes, 
often referred to as 'Digital Twins' [14]. While challenges undoubtedly exist, contemporary 
AI models stand ready to surmount obstacles encountered over the past decade. By establish-
ing a seamless 'digital thread' throughout a product's lifecycle and incorporating feedback 
loops, these models enhance cost-effectiveness and elevate productivity and innovation, val-
idated through real-world experiences to embed inherent quality [88]. 

This study endeavors to delve into and propel the incorporation of deep learning into 
CAE systems for the modeling and simulation of 3D vehicle wheels within authentic envi-
ronments. [22] The objective is to generate a framework automating the creation of 3D CAD 
models by utilizing the capabilities of deep neural networks, such as convolutional neural 
networks (CNNs) and generative adversarial networks (GANs). Simultaneously, the frame-
work aims to predict intricate CAE results accurately, elucidating the underlying engineering 
performance. To underpin this research, we draw insights from existing literature that ex-
plores the fusion of deep learning and CAE. Notable contributions from [28] highlight the 
viability of this method, which is highlighted by the proposal of a deep learning-based 
CAD/CAE framework for 3D conceptual design and studies investigating the effects of deep 
learning in CAE. Furthermore, recent strides in deep learning techniques and the advent of 
AI in CAE simulations validate the significance and timeliness of this research [81]. 

4. 3D Vehicle Wheel Under Real World Condition with Deep Learning 

Accurately identifying surrounding objects is a fundamental component in developing 
automobile wheels. Neural networks, artificial intelligence-powered algorithms that classify 
data in ways reminiscent of human cognitive processes, are often used for this task [14], [16], 
[35], [89]. To categorize data, a deep learning neural network must be trained using a specific 
training set, in which inputs and corresponding intended outputs are coupled [71]. The neural 
network may learn and classify data accurately as inputs and outputs correlate over time. The 
performance of the deep learning neural network is then evaluated using a different dataset, 
referred to as the validation set, in order to avoid overfitting during training. During training, 
a testing set is also kept aside to assess the neural network's accuracy on unobserved data. 
The Deep Learning Convolutional Neural Network is a popular type of neural network used 
in autonomous cars (DLCNN). Distinct regions within an image are given weights by this 
network, which indicates the relative importance of various visual components. Using these 
weights, the neural network skillfully categorizes the image according to its unique qualities 
[90]. To improve the model's capacity to identify adjacent items, proprietary augmentation 
methods are developed. One of the research projects is to create a specific dataset that serves 
as the testing crucible. The recommended network design is quite similar to the R-CNN (area-
based Convolutional Neural Network) architecture, with a major focus on delineating the area 
of interest. Augmentation methods include lighting, brightness control, and regular picture 
improvement  for the best  possible clarity. [91].  While the reported accuracy in controlled  
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Table 1. Overview of the image processing methods explored in the scholarly works. 

Computational     
Procedures 

Narrative portrayal Strengths Limitations 

YOLO DNN 

and CNN [14], 

[27], [81] 

Predictive bounding boxes 
for objects are produced 

using the YOLO (you only 
look once) CNN, which di-

vides an image into grid 
cells. 

▪ 24 convolutional layers, 4 
max-pooling layers, and 2 
fully linked layers are in-
cluded in this structure. 

▪ Achieves a high frame 
rate, reaching up to 185 

frames per second. 

▪ Avoids the utilization of 
region proposals, enabling a 
comprehensive view of the 
image context and eliminat-
ing the confusion between 
the image background and 

foreground objects. 

▪ Frequently encounters er-
rors because of its architec-
ture, which involves look-
ing at the entire image sim-

ultaneously. 

▪ Encounters challenges 
when dealing with small 

objects and those in close 
proximity. 

Fast R-CNN 

[92], [52] 

▪ Generates regions of in-
terest by employing region 

proposals, which are indica-
tive of potential object lo-

cations. 

▪ pools the features from 
the proposal and applies 
neural network layers for 

classification 

▪ Has high accuracy com-
paratively 

▪ Reasonably efficient 

▪ End-to-end; meaning that 
the network learns with 

more data being ran 

▪ Requires an extensive, an-
notated training dataset. 

▪ Expensive in comparison 
to other models 

Alex-Net [83], 

[18] 

Conventional convolutional 
neural network 

▪ consisting of three fully 
linked layers and five con-

volutional layers. 

▪ 3 Max pooling layers (oc-
curs after 1st, 2nd, and 5th 

convolution layer) 

▪ Backpropagation and 
Principal Component Anal-

ysis are used. 

▪ Uses many methods such 
as pooling, dropout, ReLU 

activation 

▪ Not as complex as YOLO 
CNN, so results are not as 

good.  

▪ Uses 5x5 convolution fil-
ters, which are not very 

common today 

LSTM-CNN 

[13], [93] 

▪ Long Short-Term 
Memory (LSTM) CNNs 
work similarly to regular 

CNNs.  

▪ Incorporate an extra layer, 
the LSTM layer, to grasp 

the overall patterns within 
the data. 

▪ Well-suited for video 
recognition, which is essen-
tial in autonomous vehicles.  

▪ Extremely powerful and 
flexible and generates good 

results 

▪ Extremely computation-
ally expensive due to the 

new layer  

▪ Demands substantial 
memory and poses chal-

lenges for execution on typ-
ical computers. 

ERFNet [57], 

[77] 

▪ Incorporates "residual lay-
ers," enabling the flow of 

memory throughout the en-
tire network across all lay-

ers. 

▪ Combining feature maps 
(2D point clouds) to get the 

desired result. 

▪ 23 total layers 

▪ Has similar accuracy to 
other high-accuracy mod-

els. 

▪ Executes at a faster pace 
compared to the majority 

of models. 

▪ Relatively demanding in 
terms of computational re-
sources owing to the pres-

ence of residual layers. 

Simple-Net [88], 

[55], [64], [92], 

[94], [95] 

▪ Architecture is an elemen-
tary version of a typical 

CNN.  

▪ Contains one fully con-
nected layer, two max-pool-

ing layers, and only two 
convolutional layers. 

▪ Runs fast, which was the 
initial goal of the study.  

▪ Does not require much 
computing power. 

▪ The architecture is 
straightforward, so it does 

not work very well.  

▪ Cannot be used in prac-
tice. 
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environments is acceptable, the contextual coherence of the dataset fails to validate the mod-
el's usefulness in real-world circumstances. The many image processing methods used in au-
tonomous driving are briefly described in Table 1, along with their advantages and disad-
vantages. 

Convolutional Neural Networks (CNNs) are fundamental to autonomous vehicle navi-
gation since they support a wide range of models for different applications. CNNs' funda-
mental design is modeled after human visual processing, which uses hierarchical data charac-
teristics for perception, classification, and assimilation of its surroundings. The input layer, 
where raw data, including photos, enters the network, is where it all begins. These 2D-pixel 
arrays are evaluated using chromatic characteristics and luminosity [21], [31]. Next, we get to 
the convolutional layer, the network's core. It navigates across picture segments using tiny 
filters called kernels and computes dot products based on chromatic information and weights. 
To create a new cartographic representation, this procedure is applied consistently throughout 
the image (123 Generative Design and Topology Optimization Place in Product Develop-
ment Process, n.d.) [10], [11], [18], [55]. The network configuration determines the number 
of convolutional layers and filter types [49], [84]. The ReLU activation function is then used, 
which adds nonlinearity and improves the network's capacity to recognize complex patterns. 
Although some CNNs do not include the ReLU activation, doing so usually increases accu-
racy [92]. Following activation, data moves on to the pooling layer, which is frequently the 
max-pooling layer designed to minimize feature map dimensions without sacrificing im-
portant information. By reducing the dimensionality, the network's resistance to disturbances 
and computing overhead are reduced, leading to improved sustained accuracy. Models differ 
in how frequently the max-pooling layer is integrated. The picture then passes through com-
pletely connected layers, where the crucial classification process occurs. Final predictions are 
derived from input features from earlier phases, offering a probabilistic gauge of correctness. 
Most neural networks need a large amount of training data to become proficient in classifying 
images. Gradually, however, patterns become apparent, which increases the network's classi-
fication performance. 

 Autonomous vehicles rely heavily on LIDAR sensors for object detection. These sen-
sors provide detailed maps of the environment around the vehicle and enable successful ob-
ject detection at night and in poor light. Utilizing laser technology, these sensors pulse forth 
light, which is subsequently reflected back to the sensor[50], [65], [96]. The generated data 
makes reliable data collecting possible, which makes it possible to create three-dimensional 
(3D) maps. While two-dimensional (2D) maps can be produced using older techniques, tech-
nological developments have made these less popular [36]. An Inertial Measurement Unit 
(IMU) is typically integrated into the system when using LIDAR sensors. The IMU helps the 
LIDAR sensor gather accurate data by measuring angle, velocity, and acceleration changes. 
When combined with a LIDAR sensor, an IMU's three accelerometers and three gyroscopes 
enable the measurement of crucial variables such as angular rotation, kinetic energy, and 
range. [1], [14]. Velodyne LIDAR is a well-liked option among the different LIDAR sensors 
in autonomous cars because of its demonstrated efficacy [68], [79], [97]. Since LIDAR sensors 
operate at higher frequencies than other sensors like radar, their superior accuracy and effi-
ciency in determining distances are the reason for their widespread use. It's crucial to remem-
ber, though, that LIDARs cannot always measure data effectively in bad weather, which has 
led to research into other sensor systems like radars and webcams [83]. Another popular as-
sociated with conducting used in autonomous vehicles is radar, often known as radio detec-
tion and ranging. Radar sensors, in contrast to LIDAR sensors, collect data by examining the 
reflections of electromagnetic waves rather than lasers.  

Conversely, cameras are essential to autonomous driving systems, mostly used for object 
detection. Neural networks are commonly used in conjunction with these cameras to enable 
object detection through machine learning methods. Neural networks learn to recognize pat-
terns in images, improving their capacity to detect objects more efficiently [81], [98]. Moreo-
ver, image segmentation methods which split an image into distinct "regions" for separate 
analysis are often used in object detection to achieve better outcomes. The neural network 
may evaluate fewer image elements by employing picture segmentation, sometimes called se-
mantic segmentation, which expedites analysis by reducing computational processing time 
[19]. Although cameras provide a significant precision level, they have recognized limitations. 
First, cameras have trouble performing well in bad weather, affecting their dependability and 
functionality in difficult climatic circumstances. In some situations, object detection may be 
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hampered by cameras' inherent difficulties when attempting to capture a complete 360-degree 
field of view. There may be issues if autonomous cars only use cameras as their primary sens-
ing technology for object recognition [19], [41]. It is clear that every detection technique cov-
ered has a unique set of drawbacks and difficulties. As such, overall effectiveness is improved 
over single-sensor systems by utilizing the capabilities of multiple sensors through the inte-
gration of sensor fusion techniques. Utilizing information from many sensors—including 
cameras, radar, and LIDAR—sensor fusion creates a point cloud, a detailed representation 
of the surrounding area. This strategy works well because different sensor types have different 
strengths and weaknesses. For example, different sensor types may detect different colors, 
have different ranges, and have different data quality levels. Autonomous vehicles' perfor-
mance has improved because of the integration of these sensors [18]. Software methods that 
combine input from many sensors to create a logical and intelligible representation that the 
autonomous car can use in its operations are known as sensor fusion techniques. 

Neural network usage in autonomous vehicles has attracted a lot of attention, which has 
increased in research projects using this approach. A notable instance is exemplified by the 
study conducted by [18], whereby object identification in autonomous vehicles was accom-
plished using a Radar Region Proposal Network (RRPN). Utilizing radar sensors, this ap-
proach collects information about the environment around the vehicle and creates Regions 
of Interest (RoI) that identify important regions within the picture. When applied with a fair 
degree of accuracy, radar turns out to be a more affordable option than techniques such as 
LiDAR. Based on the regions that have been identified, the neural network analyzes the visual 
input and generates predictions for object detection. Although the obtained results are better 
than those of Selective Search, a segmentation-based technique frequently used for object 
detection, they are still not optimized. Hence, the practical implementation of this strategy in 
real-life situations is only possible with further improvements. Simple neural networks and 
more complex designs are used in image-processing tasks for autonomous cars. For example, 
[81] the used methods include region suggestions, as previously mentioned, in conjunction 
with Scale-Invariant Feature Transform (SIFT) descriptors. SIFT descriptors include con-
structing three-dimensional models of the environment to detect and locate distinct points 
within a picture. Subsequently, these points are converted into numerical values and used to 
create a histogram using the identified characteristics. SIFT descriptors are very useful for 
quickly identifying crucial elements in a picture. Yet another effort undertaken by [59], [62], 
[99] targeted efficient object identification using a network termed Simple-Net. While this 
study succeeded in obtaining quicker processing speeds (0.098 s/image) compared to com-
petitors like Fast R-CNN (which took over 0.35 s/image), its efficacy was very restricted, 
leaving it unfeasible for real-life applications.  

The research undertaken by [39], [53] highlights the application of deep learning neural 
networks in traffic sign categorization. The study adopts a YOLO-CNN (You Only Look 
Once Convolutional Neural Network) model, having extra layers compared to a regular neu-
ral network. Training the model comprises a database built by a ZED stereo camera system, 
comprising two closely located cameras that collect images for evaluation. This arrangement 
emulates the human visual system, exploiting the disparity between views to interpret depth 
information in a 3D point cloud. Integrating this camera array with LiDAR and IMU sensors 
adds to comprehensive data gathering for framework development. Reported findings sug-
gest a promising accuracy of 98.98% for this model. Although the architecture of the YOLO-
CNN and Simple-Net models is identical, the YOLO-CNN model achieves better accuracy 
than Simple-Net because it has more layers and a different camera arrangement. Although 
Simple-Net has fewer layers than the YOLO-CNN model, it performs less accurately and has 
slower processing speeds. Identifying surface defects in car wheels is challenging because of 
the wide variety of fault types and complicated backgrounds. A YOLOv5-based algorithm 
for automobile tire surface defect identification is offered to solve this problem. The tech-
nique uses a self-created dataset with four different kinds of defects (linear, dotted, sludge, 
and pinhole) to train and test the YOLOv5s model. According to experimental data, the deep 
learning network achieves an average accuracy of 81.7% and 55.15 FPS [27]. Simple-Net pro-
vides shorter processing speeds, whereas YOLO-CNN delivers excellent accuracy. Each 
model has its benefits. An additional use of neural networks in image processing is the com-
bination of LiDAR and camera sensors, as shown by the study by [18].  

Using sensor data processed by a neural network, this research attempts to predict a car's 
speed. Three sensors are mounted on the automobile as part of the network architecture for 
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end-to-end driving, where the input image—typically from a front-facing camera—influences 
the vehicle's movements. Support Vector Machines (SVM) and Long Short-Term Memory 
(LSTM) are used for these tasks. SVMs function as a classification algorithm, classifying data 
points by identifying a separating "line" or "plane" on a graph. On the other hand, LSTM, a 
kind of neural network with more memory, works well for sequentially storing data, especially 
when dealing with bigger datasets. By employing LiDAR and video sensors while driving on 
roadways, the researchers created a dataset that included over 180,000 frames. The gap rate 
is used to assess the algorithm's efficacy; generally, the findings show promise. Similarly, [100] 
LiDAR and cameras may be used to detect objects. The research emphasizes that while cam-
eras perform well in some scenarios, more in-depth information about adjacent objects is 
required. As a result, an amalgamation of LiDAR and RGB sensors is used for object identi-
fication. LiDAR data and the Camera RGB picture are used for initial object identification. 
The items are then clipped for input into the neural network[13]. Another popular neural 
network design, Alex-Net, is used in data processing, and categorization is carried out. Prin-
cipal Component processing (PCA) accomplishes data processing and summarization, and 
backpropagation automatically modifies neural network parameters for improved accuracy. 
However, with its obtained accuracy of just 66%, the model is inadequate for real-world im-
plementation. Both the Alex-Net and the SVM/LSTM model share the incorporation of a 
mix of cameras and LiDAR sensors despite their notable methodological variances. The find-
ings show that the SVM and LSTM models perform better, which may be related to the much 
bigger dataset of 180,000 frames that were utilized in their creation. 

A different method of image processing in the context of autonomous cars is presented 
in the study by [101], demonstrating the use of a fisheye camera. With its wide 360-degree 
field of vision, this kind of camera eliminates the need for several cameras in a single system. 
However, one significant issue with this technique is the distortion caused by fisheye lenses. 
To overcome this difficulty, the research decided against using the Local Binary Pattern. This 
method compromises picture quality by giving each pixel a binary value (0 or 1) depending 
on its brightness level. Instead, the suggested model used zoom augmentation to correct for 
distortion, which included changing the camera's focal length inside the dataset. A Gaussian 
distribution was used to aid in categorization further. The model used the ERFNet standard 
convolutional neural network (CNN). Using the Intersection over Union (IoU) value—a scale 
from 0 to 1 that represents the difference between ground truth and projected values—the 
findings presented in the research showed acceptable performance. This metric, which re-
places mean average precision (mAP), [39], was recorded as 0.568, signifying mediocre preci-
sion. Farag et al. conducted a comparable investigation [98], for autonomous driving, a 
method based on behavior cloning was used. The process included using recorded car behav-
iors to simulate driving situations and then using this dataset to train a convolutional neural 
network (CNN). During testing, the training data was obtained via a front-facing camera and 
included steering directives that were inspired by the driving behaviors of experienced drivers 
in urban and traffic situations. The vehicle's motions were carefully captured, measured, and 
used as the basis for the training dataset.  

A version of the Gradient Descent optimization approach was used for model training, 
repeatedly changing the network's parameters to maximize performance. Several image aug-
mentation methods were used for the input photographs, such as color normalization, crop-
ping, flipping, and brightness and shadow modifications. The training data was improved in 
terms of variety and quality by integrating supplemental datasets, such as Simulator Generated 
Data and Udacity Supplied Data [40]. Albeit since the car repeatedly veered off the road dur-
ing testing, demonstrating subpar performance, the model produced very worthless results. 
The neural network's learning and enhancement capabilities were limited over time due to its 
notable lack of vast memory. This restriction probably made the model function less well 
than it should have, highlighting the need for more sophisticated and memory-enhanced de-
signs in vehicle wheel technologies [102] [103]. Using an alternative method, [98] uses a 3D 
Convolutional Neural Network (3D CNN) to identify pedestrians near autonomous cars. The 
way their architecture is set up, pedestrian entities are identified in the object detection com-
ponents and then processed by the CNN for pedestrian identification and classification (Fault 
Interpretation Using Neural Networks, n.d.) [104]. One notable use is the YOLO v3 Convo-
lutional Neural Network architecture, which is similar to other approaches in the field. The 
neural network's input layer is the 3D point cloud obtained from LiDAR sensors. Variables 
such as fuzzy enhancement and color-based enhancement are crucial for data augmentation 
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throughout the training program. The model means Average Precision (mAP) increases sig-
nificantly under this augmentation regime, with a maximum margin of 0.85% between them. 
Performance analysis using datasets from Waymo and KITTI shows an accuracy measure 
between 95% and 99% on various datasets. This indicates good results with potential for 
enhancement since the datasets used had low variation [67], [99]. By introducing a technique 
based on depth and ego-motion optimization, the scientists hope to make careful picture 
processing easier for autonomous cars. The movement of a camera is a necessary component 
of ego-motion as it records the environment of moving vehicles.  

According to the authors, [100] depth estimation is a difficult geometric problem that is 
often solved using linear mathematical paradigms. Through a posture estimate network, their 
technology simultaneously integrates RGB pictures and related feature maps. Predictions of 
object edge depth are strengthened using a contour loss function to improve accuracy. The 
PoseNet neural network, which repeatedly combines RGB pictures and feature maps after 
processing, enables the iterative improvement of accuracy across time epochs. One notewor-
thy feature of the network design is the activation of the Rectified Linear Unit (ReLU). 
Though the model can overcome noise-related difficulties, its significant computational com-
plexity and resulting loss function make it difficult to use in practical operational settings [14]. 
Research [18] use the coordinate attention block-enhanced ResNeSt Convolutional Neural 
Network model to support the region of interest detection paradigm in the model. In addition 
to lowering computing load across several cycles, the coordinate attention block design ena-
bles the AI to choose to attend to important characteristics inside data or images a key feature 
for autonomous cars. 

5. Conclusion 

With a focus on generative models to mimic 3D vehicle wheels, the research applies 
deep learning approaches to computer-aided design (CAD) and computer-aided engineering 
(CAE) systems in this ground-breaking work. At the forefront of cutting-edge developments 
in design and engineering, the study investigates substitutes such as generative adversarial 
networks (GANs), variational autoencoders (VAEs), and convolutional neural networks 
(CNNs) to address problems with traditional CAD/CAE processes. Aimed at revolutionizing 
design workflows and enhancing CAE simulations under real-world conditions, the research 
utilizes a diverse dataset to train deep learning models, anticipating more efficient generative 
design processes, improved simulation accuracy, and adaptable design solutions for diverse 
optimization objectives. The commitment to practical integration underscores its significance 
in reshaping the design and engineering landscape, promising efficiency, innovation, and pre-
cision. In the conclusive exploration, the research delves into the intersection of CAD, deep 
learning (DL), and generative design, specifically focusing on 3D vehicle wheel simulation in 
real-world conditions. It highlights the transformative potential of generative design, tracing 
its historical roots back to the 1970s and emphasizing its integration with DL techniques. 
Using Generative Adversarial Networks (GANs) within the context of 3D vehicle wheels, the 
study showcases the capability of generative models to create customized designs adhering to 
industry standards. The incorporation of topology optimization further enhances design ex-
ploration, demonstrating the iterative refinement of designs. The research extends its focus 
to the broader implications of generative design, particularly in creating lightweight, strong, 
and sustainable vehicles, aligning with the increasing prominence of electric vehicles. 

Representing a comprehensive exploration of advancing CAE through DL, the study 
envisions a transformative shift in engineering and manufacturing applications. It emphasizes 
the role of ML and AI, particularly DL, in democratizing AI for design engineers and reducing 
simulation lifecycles. Noteworthy is the integration of CAE automation in simulating vehicle 
behavior and the introduction of diverse data-driven approaches for topology optimization. 
The proposed framework, powered by deep neural networks, CNNs, and GANs, aims to 
automate 3D CAD model generation and predict CAE results accurately, positioning the in-
tegration of DL into CAE as a paradigm shift in automotive engineering. This research thor-
oughly investigates the integration of deep learning within CAD/CAE systems, emphasizing 
generative models and 3D vehicle wheel simulation in real-world scenarios. The study ex-
plores various aspects of this integration, incorporating machine learning techniques such as 
K-means, Support Vector Machine, PCA, Gaussian process, neural networks, and reinforce-
ment learning. It highlights the profound impact of deep learning on enhancing the design 
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efficiency of 3D vehicle wheels, showcasing applications of convolutional neural networks, 
genetic algorithms, and reinforcement learning in optimizing wheel structures for strength, 
stiffness, weight, and aerodynamics. The research extends its focus to autonomous vehicles, 
discussing the crucial role of deep learning in image processing and sensor fusion techniques, 
representing a paradigm shift in automotive engineering. While acknowledging challenges 
such as computational costs and sensor limitations, the study underscores the transformative 
potential of deep learning in advancing CAD/CAE systems, promising more efficient, accu-
rate, and innovative solutions for automotive design and simulation. 
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