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Abstract – The heart disease is a prevalent and potentially fatal condition affecting individuals 
worldwide. In this study, we address the challenge of predicting the severity of heart disease 
using supervised learning techniques. Leveraging a dataset comprising various demographic and 
clinical attributes, we propose a solution that employs machine learning models to accurately 
predict the severity level of heart disease. Among the evaluated models, Random Forest 
emerges as the top performer, showcasing exceptional precision, recall, accuracy, and F1-score 
across all severity levels, with an overall accuracy of 98.8%. This highlights the robustness of the 
Random Forest model in accurately classifying instances across different severity levels. 
Following closely behind, the KNN algorithm demonstrates commendable performance, 
achieving an accuracy of 92% and showcasing competitive precision, recall, and F1-score values, 
particularly for higher severity levels. Despite its notable aspects, XGBoost ranks third among 
the evaluated models, with an accuracy of 90.4%. While XGBoost excels in certain aspects, such 
as recall for Level 3 severity, it falls short in overall performance compared to Random Forest 
and KNN. For future research, exploring ensemble methods that combine the strengths of 
different algorithms could yield even better classification results, providing avenues for further 
improvement in predicting the severity of heart disease.  
 
Keywords – Heart Disease, SMOTE, Imbalance Data, Supervised Learning Model, Confusion 
Matrix. 
 
 
1. INTRODUCTION 

 
Heart disease, encompassing a range of conditions affecting the heart, remains a leading 

cause of morbidity and mortality worldwide [1]. Characterized by conditions such as coronary 
artery disease, arrhythmias, and heart valve problems, heart disease poses significant health 
challenges and contributes to a substantial economic burden [2]. According to the World Health 
Organization, heart disease is the number one cause of death globally, accounting for an 
estimated 17.9 million deaths annually, which represents 31% of all global deaths. In addressing 
the challenges posed by heart disease, particularly in predicting its severity, machine learning 
based on supervised learning techniques emerges as a promising solution. By leveraging the 
wealth of data available on various aspects of heart disease, including patient demographics, 
medical history, diagnostic tests, and lifestyle factors, supervised learning algorithms can learn 
intricate patterns and relationships within the data to predict the severity of the disease. 
Through the utilization of advanced algorithms such as decision trees, support vector machines, 
or neural networks, coupled with techniques like SMOTE-based oversampling to handle class 
imbalance, predictive models can be developed to provide early identification of individuals at 
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higher risk of severe heart disease outcomes [3], [4]. These predictive models not only assist 
healthcare providers in making informed decisions regarding patient care and treatment 
strategies but also empower individuals with the knowledge to adopt preventive measures and 
lifestyle modifications to mitigate the progression of heart disease and reduce its associated 
morbidity and mortality rates. By integrating machine learning into the realm of cardiovascular 
healthcare, we stand poised to enhance patient outcomes, reduce healthcare costs, and 
ultimately alleviate the global burden of heart disease. 

Many researchers using supervised learning for heart disease prediction. Such as, 
Research by Chandrasekhar, et al. [5] focused on enhancing the accuracy of heart disease 
prediction using machine learning techniques. They explored six algorithms, including random 
forest, K-nearest neighbor, logistic regression, Naïve Bayes, gradient boosting, and AdaBoost 
classifier, utilizing datasets from the Cleveland and IEEE Dataport. By employing GridsearchCV 
and five-fold cross-validation, they optimized model accuracy. In the Cleveland dataset, logistic 
regression achieved the highest accuracy of 90.16%, while AdaBoost performed best in the IEEE 
Dataport dataset, reaching 90% accuracy. The study introduced a soft voting ensemble classifier, 
combining all six algorithms, which further improved accuracy to 93.44% for the Cleveland 
dataset and 95% for the IEEE Dataport dataset, surpassing the individual performances of logistic 
regression and AdaBoost. Research by Bhatt, et al. [6] focuses on the development of a machine 
learning model aimed at improving the diagnosis and prognosis of cardiovascular disease. This 
model utilizes techniques such as k-modes clustering with Huang starting to enhance 
classification accuracy. Employing algorithms like random forest, decision tree classifier, 
multilayer perceptron, and XGBoost, the researchers trained their model on a real-world dataset 
of 70,000 instances sourced from Kaggle. Through rigorous parameter optimization using 
GridSearchCV, they achieved impressive accuracy rates ranging from 86.37% to 87.28%. The 
models also demonstrated high AUC values, indicating robust performance in distinguishing 
between positive and negative cases of cardiovascular disease. Notably, the multilayer 
perceptron, particularly with cross-validation, emerged as the top-performing algorithm, 
boasting an accuracy of 87.28%. Research by Asif, et al. [7] showcases a significant advancement 
in heart disease prediction through the utilization of machine learning techniques. Their study 
introduces a comprehensive model that incorporates various preprocessing methods, 
hyperparameter optimization strategies, and ensemble learning algorithms to accurately predict 
the presence or absence of heart disease. By merging three datasets from Kaggle and employing 
the extra tree classifier, data normalization, grid search cross-validation for hyperparameter 
tuning, and a proper dataset split for training and testing, their approach achieved an impressive 
accuracy of 98.15%. These findings underscore the potential of their model in early detection, 
prevention, and management of heart disease, thereby potentially reducing its associated 
mortality and morbidity rates. 

This study proposed herein advances heart disease prediction by employing various 
supervised learning models, namely K-Nearest Neighbors (KNN), XGBoost, and Random Forest, 
to address the challenge of imbalanced data. In addressing this issue, the researchers 
incorporated the Synthetic Minority Over-sampling Technique (SMOTE) to balance both class 
and attribute distributions within the dataset. By utilizing SMOTE, which synthesizes new 
instances of the minority class, the researchers aimed to mitigate the effects of data imbalance 
and improve the overall performance of the predictive models. Through rigorous 
experimentation and evaluation, the study demonstrated the effectiveness of these techniques 
in enhancing the accuracy and reliability of heart disease prediction, thereby facilitating early 
detection and intervention strategies to reduce associated mortality and morbidity rates. 
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2. RESEARCH METHOD 

 

 
Figure 1. Proposed System Models for Prediction 

 
The proposed system models for heart disease prediction follow a structured 

methodology encompassing several key stages. Initially, data collection is undertaken from 
relevant sources to gather comprehensive datasets. Following this, data pre-processing is 
performed to cleanse and prepare the raw data, resulting in a refined dataset ready for analysis. 
The pre-processed data is then split into two subsets, with 80% allocated for training and 20% 
for testing. Three supervised learning models, namely K-Nearest Neighbors (KNN) Classifier, 
XGBoost Classifier, and Random Forest (RF) Classifier, are employed for model prediction. Each 
classifier undergoes hyperparameter tuning to identify the optimal parameters, enhancing 
model performance. Post-training, the models are evaluated using confusion matrices and other 
evaluation metrics to determine their accuracy and efficacy. The best-performing model is 
identified through this rigorous evaluation process, ensuring robust and reliable prediction of 
heart disease severity.  

 
2.1.  Data Collection 

The dataset used in this study for predicting heart disease comprises 76 attributes, 
although only 14 key attributes were utilized for the analysis. These attributes include patient 
demographics and clinical measurements: age, sex, chest pain type (cp), resting blood pressure 
(trestbps), serum cholesterol (chol), fasting blood sugar (fbs), resting electrocardiographic 
results (restecg), maximum heart rate achieved (thalach), exercise-induced angina (exang), ST 
depression induced by exercise relative to rest (oldpeak), the slope of the peak exercise ST 
segment (slope), number of major vessels colored by fluoroscopy (ca), thalassemia (thal), and 
the diagnosis of heart disease (num), which indicates the degree of vessel narrowing. This 
selection captures a comprehensive profile of the patient's health, focusing on cardiovascular-
related metrics that are crucial for predicting heart disease severity. Based on sample dataset 
can be seen in Table 1. 
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Table 1. Sample Datasets and Description 
Variable 

Name 
Role Type Description 

Missing 
Values 

age Feature Integer years no 

sex Feature Categorical - no 

cp Feature Categorical - no 

trestbps Feature Integer Resting blood pressure (on admission to the hospital) no 

chol Feature Integer Serum cholesterol no 

fbs Feature Categorical Fasting blood sugar > 120 mg/dl no 

restecg Feature Categorical  no 

thalach Feature Integer Maximum heart rate achieved no 

exang Feature Categorical Exercise induced angina no 

oldpeak Feature Integer ST depression induced by exercise relative to rest no 

slope Feature Categorical  no 

ca Feature Integer Number of major vessels (0-3) colored by fluoroscopy yes 

thal Feature Categorical  yes 

num Target Integer Diagnosis of heart disease no 

 

2.2. Pre-Processing 
The preprocessing steps proposed for this dataset involve data cleaning to address 

missing values, wherein missing data points are either removed or imputed with the mean value 
per attribute. Subsequently, to tackle class imbalance, Synthetic Minority Over-sampling 
Technique (SMOTE) is employed. SMOTE generates synthetic samples for the minority class by 
interpolating between existing samples in the feature space, thereby balancing the class 
distribution. By cleaning the data of missing values and applying SMOTE to handle class 
imbalance, the dataset becomes more robust and suitable for training machine learning models. 
Pre-processed data can be seen below. 

Based on Figure 2 (a), the image illustrates the raw data before undergoing cleaning 
processes. Notably, numerous missing values are observed across the dataset, indicating 
inconsistencies and potential data quality issues. However, in Figure 2 (b), after data cleaning, 
the dataset exhibits consistency, with no missing values detected. Each attribute is now 
complete, with a total of 294 data points per attribute, ensuring the dataset's integrity and 
reliability for further analysis. Moving to Figure 2 (c), the visualization depicts the class 
distribution before applying SMOTE. Here, an evident class imbalance is observed, with one class 
significantly outnumbering the other. To address this imbalance, Figure 2 (d) presents the class 
distribution after applying SMOTE. Through SMOTE, synthetic samples are generated for the 
minority class, resulting in a more balanced distribution between classes. 

Based on Figure 2 (a), the image illustrates the raw data before undergoing cleaning 
processes. Notably, numerous missing values are observed across the dataset, indicating 
inconsistencies and potential data quality issues. However, in Figure 2 (b), after data cleaning, 
the dataset exhibits consistency, with no missing values detected. Each attribute is now 
complete, with a total of 294 data points per attribute, ensuring the dataset's integrity and 
reliability for further analysis. Moving to Figure 2 (c), the visualization depicts the class 
distribution before applying SMOTE. Here, an evident class imbalance is observed, with one class 
significantly outnumbering the other. To address this imbalance, Figure 2 (d) presents the class 
distribution after applying SMOTE. Through SMOTE, synthetic samples are generated for the 
minority class, resulting in a more balanced distribution between classes. 
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(a) Before Cleaning Data (b) After Cleaning Data 

  
(c) Before Smooting (d) After Smooting 

Figure 2. Pre-processed data 

 
2.3. Supervised Learning Models 

Supervised learning models is a type of machine learning algorithm that learns from 
labeled data, meaning the input data is paired with corresponding output labels [8], [9], [10], 
[11]. The model is trained on a dataset where both input features and their corresponding 
correct output labels are provided. During the training process, the model learns the relationship 
between the input features and the output labels, allowing it to make predictions or decisions 
when given new, unseen data. 
2.3.1 KNN Model 

K-Nearest Neighbors (KNN) classifier is a type of supervised learning algorithm used for 
classification tasks [12], [13]. It is a simple yet powerful algorithm that works based on the 
principle of similarity. In the KNN algorithm, when given a new, unseen data point, the algorithm 
identifies the k-nearest data points from the training dataset based on a distance metric (such 
as Euclidean distance or Manhattan distance). These nearest data points are determined based 



 
 

255 

 

on the similarity of their feature values to those of the new data point. Based on euclidean and 
manhattan distance can be seen in eq (1) and (2). 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √∑ (𝑞𝑖 − 𝑝𝑖)2
𝑛

𝑖=1
 (1) 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ |𝑞𝑖 − 𝑝𝑖|
𝑛

𝑖=1
  (2) 

 

Where, 𝑝𝑖 and 𝑞𝑖 are the 𝑖𝑡ℎ dimensions of point 𝑝 and 𝑞, and 𝑛 is the number of 
dimensions. 

 
2.3.2 XGBoost Model 

XGBoost, or eXtreme Gradient Boosting, stands as a leading algorithm in the realm of 
supervised learning, renowned for its exceptional performance in classification and regression 
tasks [14], [15]. Built upon the gradient boosting framework, XGBoost sequentially combines 
weak learners, often decision trees, to form a robust predictive model. Its efficacy lies in its 
ability to address overfitting through L1 and L2 regularization, optimize user-defined objective 
functions, and prune trees during construction to enhance model simplicity. Moreover, XGBoost 
offers scalability with support for parallel and distributed computing, facilitating efficient 
processing of large datasets. 

 
2.3.3 Random Forest Model 

Random Forest model stands as a powerful ensemble learning technique renowned for 
its versatility and robust performance in both classification and regression tasks [16], [17]. 
Operating by constructing numerous decision trees during training, it amalgamates their outputs 
to yield a final prediction. Key to its effectiveness is the introduction of randomness at various 
stages, including feature selection and bootstrapping, which ensures the diversity of individual 
trees and mitigates overfitting. By leveraging bagging techniques, Random Forest reduces 
variance and enhances generalization, rendering it less susceptible to noise and outliers in the 
data. Moreover, its provision of feature importance metrics facilitates insights into the dataset's 
underlying patterns, aiding in feature selection and interpretation. 

 
2.4. Confusion Matrix 

confusion matrix is a tabular representation used in supervised machine learning to 
evaluate the performance of a classification model. It compares the actual values of the target 
variable (ground truth) with the predicted values produced by the model [3], [18]. A confusion 
matrix provides valuable insights into the performance of a classification model, allowing 
practitioners to assess its accuracy, precision, recall, specificity, and other performance metrics. 
It serves as the basis for calculating various evaluation metrics, such as accuracy, precision, recall 
(sensitivity), specificity, F1-score, and area under the ROC curve (AUC-ROC). Based on confusion 
matrix equation can be seen in eq (3) – (6). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 (5) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 ) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 )
 (6) 
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Where, True Positives (TP), representing instances correctly classified as positive by the 
model; True Negatives (TN), denoting instances correctly identified as negative; False Positives 
(FP), or Type I errors, indicating instances inaccurately labeled as positive when they are 
negative; and False Negatives (FN), or Type II errors, signifying instances erroneously classified 
as negative when they are positive. 

 
 

3. RESULTS AND DISCUSSION 

 
The results and discussion section begins with an examination of parameter selection, 

as outlined in Table 2. This table encapsulates the chosen parameters, providing a 
comprehensive overview of the model's configuration. Each parameter's significance is 
scrutinized in light of its impact on model performance, allowing for a detailed analysis of how 
parameter tuning influences predictive accuracy and generalization. By delving into parameter 
selection, the section lays the groundwork for elucidating the intricacies of model optimization 
and shedding light on the factors driving the observed results. 

 
Table 2. Parameter selection per model 

Model Classifier Parameter 

KNN Classifier n_neighbors = 3 

XGBoost Classifier learning_rate=0.1, n_estimators=100, random_state=42 

Random Forest Classifier n_estimators = 100, random_state = 42, max_leaf_nodes = 20, min_samples_split = 15 

 
Following parameter selection, the model undergoes training. Evaluation results of the 

KNN model are presented in Table 3, providing a comprehensive overview of its performance 
metrics. Additionally, a visual representation of the confusion matrix based on the KNN model 
is depicted in Figure 3 (a), offering a clear illustration of the model's classification accuracy and 
misclassifications across different classes. 

Table 3. KNN Evaluation 
Severity Level Accuracy Precision Recall F1-Score 

Safe 

92% 

97% 84% 90% 

Level 1 80% 86%  83% 

Level 2 92% 95% 93% 

Level 3 97% 95% 96% 

Level 4 95% 100% 97% 

 
Subsequent to the KNN model evaluation, the XGBoost model undergoes training. 

Evaluation outcomes of the XGBoost model are displayed in Table 4, enabling a comparative 
analysis with the KNN results outlined earlier. Additionally, akin to the KNN analysis, the 
confusion matrix based on the XGBoost model is illustrated in Figure 3 (b), offering insights into 
the model's classification performance. 

Table 4. XGBoost Evaluation 

Severity Level Accuracy Precision Recall F1-Score 

Safe 

90.4% 

92% 89% 91% 

Level 1 94% 84%  89% 

Level 2 85% 89% 87% 

Level 3 88% 99% 93% 

Level 4 94% 92% 93% 

 
Final evaluation entails training the XGBoost model, building upon the insights gleaned 

from the KNN assessment. The evaluation results for the XGBoost model are delineated in Table 
5, offering a comparative analysis with both the KNN and XGBoost outcomes discussed earlier. 
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Furthermore, akin to the assessments of KNN and XGBoost, the confusion matrix based on the 
Random Forest (RF) model is depicted in Figure 3 (c), allowing for a comprehensive examination 
of classification performance across all three models. 

 

Table 5. Random Forest Evaluation 

Severity Level Accuracy Precision Recall F1-Score 

Safe 

98.8% 

99% 99% 98% 

Level 1 94% 95%  96% 

Level 2 94% 95% 94% 

Level 3 96% 95% 96% 

Level 4 100% 100% 100% 

 
From the evaluation results of the three models conducted, it can be concluded that 

Random Forest (RF) demonstrates superior performance compared to KNN and XGBoost. RF 
achieves the highest accuracy across all severity levels, with an overall accuracy reaching 98.8%. 
Additionally, RF also exhibits excellent precision, recall, and F1-score values for each severity 
level, indicating its capability in accurately classifying each class. While KNN and XGBoost also 
demonstrate commendable performance, there are certain severity levels where they do not 
perform as well as RF. KNN shows decent performance in identifying lower severity levels (Level 
1), while XGBoost exhibits better performance in identifying higher severity levels (Level 3). The 
visualizations of the confusion matrix tables for each respective model can be observed in Figure 
3. These visual representations provide a clear and intuitive understanding of the classification 
performance of each model across different severity levels. 

 

  
(a) KNN Matrix (b) XGBoost Matrix 

 
(c) Random Forest Matrix 

Figure 3. Table of confusion matrix per model 
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4. CONCLUSION 

 
Upon evaluating the performance of the KNN, XGBoost, and Random Forest algorithms 

across various severity levels, it becomes evident that Random Forest (RF) emerges as the top-
performing model, followed by KNN and XGBoost. Random Forest exhibits exceptional precision, 
recall, accuracy, and F1-score across all severity levels, with an overall accuracy of 98.8%. The 
RF model demonstrates superior precision, recall, and F1-score for each severity level, 
showcasing its robustness in accurately classifying instances. Following closely behind, the KNN 
algorithm achieves an accuracy of 92% and demonstrates commendable precision, recall, and 
F1-score values, particularly for higher severity levels. Despite its competitive performance, 
XGBoost ranks third among the evaluated models, with an accuracy of 90.4%. While XGBoost 
excels in certain aspects, such as recall for Level 3 severity, it falls short in overall performance 
compared to RF and KNN. In conclusion, Random Forest proves to be the most effective 
algorithm for severity level classification, offering superior performance metrics across 
precision, recall, accuracy, and F1-score, followed by KNN and XGBoost, respectively. 

For future research, exploring ensemble methods that combine the strengths of 
different algorithms could yield even better classification results. Additionally, investigating the 
impact of feature engineering techniques and domain-specific knowledge integration on model 
performance could enhance the accuracy and generalization capabilities of the classifiers. 
Furthermore, conducting experiments with larger and more diverse datasets could provide 
deeper insights into the scalability and robustness of the models across various real-world 
scenarios. Overall, continued research in this area holds the potential to further refine 
classification models for severity level prediction tasks in healthcare and beyond.. 
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