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Abstract – The lost impact on the research process, can be serious in classifying results leading 
to biased parameter estimates, statistical information, decreased quality, increased standard 
error, and weak generalization of the findings. In this study, researchers discuss the problems 
that exist in one of the algorithms, namely the Naive Bayes Kernel algorithm. The Naive Bayes 
kernel algorithm has the disadvantage of not being able to process data with the mission value. 
Therefore, in order to process missing value data, there is one method that we propose to 
overcome, namely using the mean imputation method. The data we use is public data from UCI, 
namely the HCV (Hepatisis C Virus) dataset. The input method used to correct missing data so 
that it can be filled with the average value of the existing data. Before the imputation process 
means, the dataset uses yahoo bootstrap first. The data that has been corrected using the mean 
imputation method has just been processed using the Naive Bayes Kernel Algorithm. From the 
results of the research tests that have been carried out, it can be obtained an accuracy value of 
96.05% and the speed of the data computing process with 1 second.  
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1. INTRODUCTION 

 
In the current era, the term data mining has become a term that is often used in the 

medical literature, especially medicine along with computer science. Data processing can be 
used as a large data model to find association patterns that have not been recognized. The data 
input is used as an evaluation system, which results in useful data analysts. [1]. Of course this is 
very much needed accuracy in obtaining results when processing data, especially in the medical 
or medical field. In the data mining process, the data that has been stored and compiled will be 
more and more and then processed to produce new information stored in the data set. This is 
what will make the data very influential on data mining to produce a conclusion or decision. In 
cases that occur, missing value data greatly affects the pattern recognition (classification) 
process in data mining. The missing value problem greatly affects the pattern formed from the 
classification process [2]. This paper presents a kernel-based naive bayesian model that is used 
in case of problems using a supervised classification model for classification. 

Naive bayes plus network tree, full graph classifier, and k-depence bayesian 
classification model confirmed to an innovative kernel based naive bayes paradigm, in addition 
to strong naive bayes classifier ability to predict/classify. Supervised classification is good 
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training in recognizing patterns. This type of classification requires the creation of a classification 
algorithm, which is defined by a function that provides the required tags or class-specific 
identification labels to the instances described by the variable group described in a single 
dataset. Naive Bayes classification as a basic probabilistic classification based on Bayes theory. 
naive bayes algorithm process or not process any property that is different from the provided 
class also known as fixed attribute is not affected by the appearance of any additional features 
present in the data. 

 The main benefit of using naive bayesian algorithms for small amounts of data used for 
training is to train the system to measure variance as well as the means of all variables provided 
in the dataset, an important requirement for classification. Only the variance of the variables for 
each individual label needs to be evaluated and not the entire covariance matrix for the data 
provided as input to the system on the grounds that all independent variables are grouped in 
the Naive Bayyes kernel class implemented on the numeric attributes in contract with the Naive 
Beyesian classification. The function used in the nonparametric estimation process is known as 
the kernal. Different kernels are applied to the kernel prsoes density prediction technique for 
the estimation of the density function of the random variables, in the kernel regression 
mechanism for the expected conditional estimation of the random variables in the data. This 
kernel density prediction has a special class of estimation functions known as nonparametric 
density estimators, The process applied for medical prediction includes the following steps: 

Data collection retrieval. 
Data pre-processing. 

A. Data cleaning. 

B. Replace missing values. 

C. Outlier identification and noise removal. 

D. Data transformation (scaling, conversion, and normalization). 

E. Machine learning algorithm (kernel based Naïve Bayes classifier). 

The results of this study can be used as recommendations and input for health experts 
in making predictions of hepatitis disease, helping higher education administrations to provide 
early warning and early guidance for students who may not graduate on time. The scope of this 
study is limited to the use of the mean imputation method, in predicting hepatitis disease and 
comparing the accuracy of the method [3]. This study uses the nave Bayes algorithm to predict 
HCV. Naïve Bayesian strengths and weaknesses [4]  Strengths: a. Easy to implement. b. Gives 
good results for most cases. Weaknesses: a. Must assume that between features are not related 
(independent) In reality, the relationship exists This relationship cannot be modeled by the Naïve 
Bayesian Classifier. 

 
2. RESEARCH METHOD 
 
2.1.  Missing Value 

Missing value is the incompleteness of data or components in the dataset which causes 
the dataset to be imperfect. Incomplete values are caused by several factors, including human 
error, lost data due to viruses in the database. In research data is very important. Missing or 
incomplete data in the dataset will cause the results obtained to be inaccurate[2],[5]. In the 
missing value data, there are several causes that result in the loss of data in records and 
attributes. This is because there is no response in one part or several parts of the data source 
and can be one of the factors that result in missing values in the dataset. [6].  The problem of 
missing data itself, in data processing will greatly affect the classification results [7]. The data we 
use in this study is HCV (Hepatitis C Virus) data taken from UCI. The dataset consists of 615 
records, 12 attributes and 1 label [8]. In the HVC dataset, there are some missing data values. 
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Because the dataset used has a missing value, a problem arises in the algorithm that we will use 
to process the classification results using the Naive Bayes kernel algorithm. Below is an example 
of a table with missing values: 
 

Table 1. Example of a dataset table with missing values 
Age Sex ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT Category 

23 0 47 19.1 38.9 164.2 17 7.09 3.2 79.3 90.4 70.1 3 

25 0 42 38.2 63.3 167.7 14 6 4.28 66.9 40.2 70.5 3 

27 0 45 27.5 10.5 37.8 10 8.77 3.2 55.2 35.9 74.5 3 

29 0 49 NA 53 39 15 8.79 3.6 79 37 90 3 

30 0 45 NA 66 45 14 12.16 6.1 86 43 77 3 

31 0 45 34.6 44.3 96.2 16 10.11 6.28 81.2 48.1 82.1 3 

32 0 41 34.4 12.1 60.9 6 13.8 5.48 45.4 33.1 71.1 3 

 
In the dataset because there are missing data values, there are several methods used, 

including filling in the minimum, average and maximum values from the existing data. Before 
the process of recharging with the method already mentioned, there is another step, namely 
bootstrap. After processing the new boostrap, it will proceed to the process of replacing missing 
values and proceed again to processing using the Naive Bayes kernel algorithm.  

 
2.2.  Bootstrap 

Before entering the process of replasing missing values with the mean replace missing 
value method, the data will be processed using a boostrap. The boostrap method is used to 
estimate the acquisition of an unknown group or population with real gains obtained from the 
repeat pilot process. Returning the original sample or sample is a technique used by the 
bootstrap method. The results of observations that are considered as if the population is turned 
into a sample which is called the original sample.  

The use of the bootstrap method aims to obtain parameter estimates based on minimal 
data. In statistics, scanty data and data that do not match certain assumptions or data that do 
not have any meaning about their acquisition can be referred to as minimal data.  
The following are some assumptions about the bootstrap method: 

1. The sample used to represent the population is an appropriate sample that has been 
owned. 

2. The method that is used to estimate the acquisition of an unknown group or 
population with the actual gain obtained from the re-sampling process is called the 
bootstrap method. So, each Bootstrap sample provides each other. However, each 
Bootstrap sample is independent of each other or unaffected by the others. 

The training data is retrieved and then returned to the initial dataset so that it has the 
opportunity to retrieve it, that's what the bootstrab method does. If the first dataset has N data, 
it can be seen that the average bootstrab sample has a value of N data in the range of 63.2% 
originating from the original dataset. 

This method is in accordance with the fact that the bootstrap sample performs data 
probability selection, namely: 

 
1-(1-1/N)N  (1)                 

The probability will approach 1-e-1 = 0.632 with the asymptotic technique, when the 
value of N is large. Data that is not categorized as a bootstrapping sample will automatically be 
part of the testing data. The model that is formed from training data will be implemented in data 
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testing which is used to produce Bootstrap sample accuracy, namely (ci) To generate b bootstrap 
samples, samples are taken many times as many as b [9]. 

There are many ways to approach the bootstrap sample regarding all the accuracy of 
the arithmetic classification. A commonly used example is Bootstrap 0.632 where in finding the 
accuracy of everything by combining the accuracy of each bootstrap sample (ci) with the 
accuracy sought from training data where the data is known for its class label (accs). For this, 
the formula is: 

 

accboot =
1

𝑏
∑ (0.632 𝑥 𝑐𝑖 +𝑏

𝑖=1  0.368 𝑥 𝑎𝑐𝑐𝑠)   (2)            

When processing data, the number of attributes and the amount of data is large, it 
greatly affects the performance of the computer that must be used for processing. This is very 
reasonable because in processing so many data or attributes, it takes a long time because they 
have to process each data one by one. The more data that is processed, the higher the computer 
specifications used. Therefore, we need a method used to reduce the amount of data randomly. 
The Sample Bootstrapping method is used to reduce the amount of training data to be processed 
[10]. With the reduced amount of data processed, the shorter the time required. In addition, 
the required computer specifications are also not as high as when the data is still intact or has 
not been reduced. To reduce the amount of training data to be processed, the Bootstrapping 
Method can be used [11]. Thus, one of the methods used to reduce the amount of data or 
attributes that are many randomly, can use the Bootstrapping Method. In addition, basically the 
bootstrap method is used to reduce standard errors. It can be seen the difference before and 
after bootstrapping. 

Basically a bootstrap method, not as an error reducer. However, it is used to predict 
errors. Thus, the standard error (SE) will be obtained in the dataset. To estimate the standard 
error, you can use the following equation:: 

 
𝑆𝐸 =  

𝜎

√𝑛
  (3) 

𝜎 = standard deviation 

𝑛 = number of subjects 

𝑆𝐸 = standard error 

 

So the larger the value of n, the smaller the error value. 
The processed data after the boostrap data still has missing values. Therefore, there are 

more steps needed to fix the missing data. In the dataset because there is missing data, there 
are several methods that can be used, including filling it back with minimum, average and 
maximum values. In this study the proposed method is to fill back with the average value of. 

 
2.3. Missing Value Mean Imputation 

Imputation is a way to solve the problem of missing values. Where the process is carried 
out by eliminating values that do not match the data set, looking for missing values in the data 
set by making estimates based on certain methods or in other ways. [12],[13]. There are several 
imputation techniques used, including litwise deletion, mean imputation and K-NN imputation. 
[12]. Mean imputation is one method of the average value of the existing values for each 
variable is calculated and the missing values for these variables and calculated with this average. 
There are many methods used for imputation such as average imputation to some more robust 
method based on the relationship between attributes [14]. This method works by calculating 
the mean or median of the non-missing values in a column and then replacing the missing values 
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in each column separately and independently of the others. It can only be used with numeric 
data types. 

 
As for how to find out the mean or average value, you can use the equation below::  
 

Mean Value = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
  (4) 

 
From the calculation of the average value or the mean of one of the ALB attributes, for 

example, before there was a value of 31.5, there were only values between 31, 39, 23 and 33. 
The average value was obtained from the sum of the values 31 + 39 + 23 + 33 then in for the 
number of available values before the missing value is filled, that is 5 records. After the data is 
imputed using the average value, it will continue with the process using the Naive Bayes kernel 
algorithm.  

 
2.4. Naive Bayes Kernel 

Naive Bayes kernel method was used to implement work on predictive data analysis, 
applying kernel based Naïve Bayes classifier to validate some lessons learned to predict disease 
probability. The kernel-based Naive Bayes algorithm implemented for the classification process 
produces higher accuracy than the classic Naive Bayes network [15],[16],[17].  

The Naive Bayes classifier is described as a basic probabilistic classifier built on the 
application of Bayes' theorem along a set of assumptions specific to conditional independence. 
'Mode of independent features' would be considered a clearer term describing the original 
probability model. Directly, the algorithm behind the work of the Naive Bayesian classification 
process assumes that the occurrence or non-occurrence of any distinct property of the provided 
class also known as a fixed attribute is unaffected by the occurrence (or non-occurrence) of any 
additional features present in the data.  

When studying Bayesian network-based classification. Continuous variables are usually 
handled by discretization or assumed by a Gaussian distribution. In addition, nave Bayes added 
a Bayesian k-dependence classifier tree and a complete graph classifier adapted to the new 
kernel-based Baesian network pattern. Naïve Bayes plus flexible trees seem to have superior 
behavior for supervised classification [18]. 

Possible continuous attribute patterns for the naive Bayesian classifier can be 
approximated by kernel density estimates, letting each pattern influence the shape of the 
probability density resulting in an accurate estimate. KDE suffers from computational costs 
making it impractical in many real-world applications. Smooths the density using splines so that 
it requires fewer coefficients for estimation than the entire training set [19]. The possible 
continuous feature patterns required for probabilistic inference in a Bayesian network classifier 
can be calculated by kernel density estimation, letting each pattern influence the shape of the 
probability density. We smoothed the density using a spline so that it required estimation of 
only very few coefficients than the entire training set allowing fast implementation of BNC 
without compromising classifier accuracy. All rights reserved [20].   

Nonparametric density estimation has wide application in computational finance 
especially in cases where high frequency data is available. Given the number of kernels 
estimating density, the current method takes time directly to sum kernels to perform a single 
density query. In on-line algorithms where points are constantly added to the density, the 
cumulative run time for the number of queries makes it very expensive, if not impractical, to 
calculate the density for large n. The run time for the density query is reduced to variable X or 
even time constant, depending on the selected kernel, and, accordingly, the cumulative run time 
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is reduced to X, respectively. Our results show that the MODE algorithm provides a dramatic 
advantage over a direct approach to density evaluation[21]. 

The main benefit of using the Naive Bayesian classification algorithm is that only a small 
amount of data is needed as training data to train the system to estimate the variance as well 
as the average of all the variables provided in the data set, which is an important condition for 
the classification process. It's just the variance of the variables for each individual label that 
needs to be evaluated and not the entire covariance matrix for the data provided as input to the 
system because all independent variables are grouped into classes. Nave Bayes net kernels can 
also be implemented on different numeric attributes with Naive Bayesian classifiers. With the 
rapid development of the Internet and the rapid development of big data analysis technology, 
data mining has played a positive role in promoting industry and academia. Classification is an 
important problem in data mining. According to the scale and characteristics of the data, 
different solution spaces are selected, and the solutions of the multiple problem are 
transformed to the original space classification surface to increase the speed of the algorithm. 
Research Process. The speed of the algorithm can be increased by transforming the solution of 
the multiple problem into the classification surface of the original space [22]. 
 The weighting function used in the nonparametric estimation procedure is known as the 
kernel. Different kernels are implemented to process kernel density estimation techniques for 
estimation of the density function of random variables, or in kernel regression mechanisms to 
estimate conditional expectations of random variables in the dataset. These kernel density 
estimators belong to a special class of estimator functions known as nonparametric density 
estimators. Unlike parametric estimators where density estimators have a fixed functional form 
and these function parameters are the only information required to be stored, there is no fixed 
structure for nonparametric density estimators and they rely on data points provided in the data 
to reach estimates. 

In this step, we perform two tasks. The first task is usually to build a machine learning 
model with the selected data set, which is called the training data set then the second task is to 
test the built model using another invisible data set, which is called the test data set. The 
proposed model used in our methodology is the KNB classifier. Actually, KNB is Nave Bayes with 
kernel density estimation (KDE). The following subsection provides an explanation of the 
proposed KNB. 

Suppose X is the set of data values, (x1=x1,x2,...xN) and Cis is the topic set assuming Naive 
Bayes, the probability of a topic is C. Given the features x1,x2,...xN can be calculated by the 
following equation: 

 
 
 
𝐶 = max

𝑐𝑗∈𝐶
𝑃(𝑐𝑗|, 𝑥2 … 𝑥𝑛)  (5) 

 

    = max
𝑐𝑗∈𝐶

𝑃(𝑥1, 𝑥2, … 𝑥𝑛|𝑐𝑗)𝑃(𝑐𝑗)

𝑃(𝑐1,𝑐2,…𝑐𝑛)
 

 

    = max
𝑐𝑗∈𝐶

 𝑃(𝑥1, 𝑥2 … 𝑥𝑛|𝑐𝑗)𝑃(𝑐𝑗) 

 
The more common: 
 
𝑃(𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 |𝑐𝑗) = ∐ 𝑃𝑖 (𝑥1|𝑐𝑗) (6) 
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The probability, P(xi,|cj), that the feature value of a value equal to x if given the topic j (class j) 
equals cj, was estimated using KDE from a training data set labeled (X, C). KDE that is: 

 

𝑃(𝑥𝑖|𝑐𝑗)= 
1

𝑁ℎ
 ∑ 𝑔𝑢𝐾𝑒𝑟𝑛𝑒𝑙(

𝑁

𝑦=1
𝑥1, 𝑥𝑣𝑖), 𝑔𝑢𝐾𝑒𝑟𝑛𝑒𝑙(𝑎, 𝑏) =

1

√2𝜋
𝑒

(𝑎−𝑏)2

2ℎ2   (7) 

 
 
One non-parametric way of estimating the population probability density function Probability ), 
P(xi,|cj) is estimated using the Equation as above i.e. guKernel is a Gaussian function kernel with 
variance 1 and mean zero, N is the number of input data X belonging to class j where , cj, xvic 
are the word feature values at the i-th position of the v-th input X = (x1i, x2i ... xNi) in class j , 
and h is the bandwidth, or smoothing parameter. To optimally estimate the conditional 
probability, h is optimized on the training dataset. 
The process applied to predictions on a dataset includes the following steps: 

1. Dataset retrieval. 
2. Data pre-processing. 

a. Boostrap processing on dataset 
b. Replace the missing value with the mean or average value. 
c. Data transformation (scaling, conversion, and normalization). 

3. Machine learning algorithm (kernel based Naïve Bayes classifier). 
4. Prediction and calculation of performance 
 

2.5. Dataset 
The dataset used is HCV (Hepatitis C Virus) public data taken from the UCI repository. 

The dataset consists of 615 records, 12 attributes and 1 label. In the data, there is still data that 
is missing value, so it needs improvement so that the missing data can have a complete value. 
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Figure 2. Flowchart of data processing and testing of the Naive Bayes kernel algorithm 

 
 
 
 
 



Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)  
Vol. 6 No. 2, 2021, pp. 134 – 143 

 

142 

 

3. RESULTS AND DISCUSSION 
 
 We took the HVC data set contained at UCI in 2021 data consisting of 615 records, 12 
attributes and 1 label. In the data there are some data that is missing value. Therefore, special 
handling is needed so that no data is lost. In the trial of the missing data, we made improvements 
by filling in the data from the calculation of the average value for each attribute. However, 
before filling in the missing value data, we filter the original data using the boostrap method 
which is used to select the data that has weight for the mean imputation process.. 

 
Table 2. Data that still has Missing Value 

Sex ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT Category 

0 31 86.3 5.4 95.4 117 1.57 3.51 60.5 53.6 68.5 5 

0 38 102.9 27.3 243.2 15 5.38 4.88 72.3 400.3 73.4 5 

0 NA NA 40 54 13 7.5 NA 70 107 79 5 

0 23 34.1 2.1 90.4 22 2.5 3.29 51 46.8 57.1 5 

1 33 79 3.7 55.7 200 1.72 5.16 89.1 146.3 69.9 3 

 
Table 3. The missing value data has been filled with the calculated value from the average 

Sex ALB ALP ALT AST BIL CHE CHOL CREA GGT PROT Category 

0 31 86.3 5.4 95.4 117 1.57 3.51 60.5 53.6 68.5 5 

0 39 102.9 27.3 143.2 15 5.38 4.88 72.3 400.3 73.4 5 

0 31.5 75.575 40 54 13 7.5 4.21 70 107 79 5 

0 23 34.1 2.1 90.4 22 2.5 3.29 51 46.8 57.1 5 

1 33 79 3.7 55.7 200 1.72 5.16 89.1 146.3 69.9 5 

 
The data that has been corrected with the new mean imputation is tested by using the 

Naive Bayes kernel algorithm. The differences between using the traditional naive bayes 
algorithm and the naive bayes kernel are as follows: 

 
Table 4. differences in accuracy test results 

Classifiers X-Validation Split Validation  

Naive Bayes Kernel 96.05% 96.72% 

Naive Bayes 89.92% 90.76% 

 
4. CONCLUSION 

 
In our research using the missing value HVC dataset, we can get outstanding results in 

the Naive Bayes kernel algorithm. Problems encountered in naive Bayes kernel processing can 
be solved by means of imputation solutions to fill in missing data values. The test results with X-
Validation training modeling on the Naive Bayes kernel got an accuracy value of 96.05% and Split 
validation was 96.72% larger than the traditional Naive Bayes model, namely the X-Validation 
model was only 89.92% and Split Validation by 90.76% only.   
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