
Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

47

Automatic Power-up Items Placement on Shooter Game
using Convolutional Neural Network

Alvin Satria Nugraha1, Abas Setiawan*2, and Wijanarto3
Faculty of Computer Science,Universitas Dian Nuswantoro, Semarang, Indonesia
E-mail address: 111201609431@mhs.dinus.ac.id1, abas.setiawan@dsn.dinus.ac.id*2,
wijanarto@dsn.dinus.ac.id3
*Corresponding author

Abstract - A shooter game is a popular game genre with various components. To make a shooter
game more attractive, some power-ups items can support players to achieve their goals. Power-
ups items provide more power to players, some of which include ammo, extra lives, and
invulnerability. The location of power-ups items should be in a special place so that it neither
too easy to find nor too difficult to find. Item placement could be done manually by a human or
a technical artist. It will need a relatively long time and high cost. In this paper, we try to mimic
technical artist vision when placing an item. Visual images have been collected by scanning
spatially the forest terrain by using a virtual camera on top. Each image data comply with the
item placement rules according to the Tomb Raider and Uncharted 4 games. Convolutional
Neural Network (CNN) is used to find out which images can be occupied by power-up items or
not. From several experimental scenarios, the use of the Global Average Pooling layer is proven
to produce a model that is not overfitting. The best CNN models are developed and got an
accuracy of 90.5% with an architecture that includes the Global Average Pooling layer. That
model is applied to the new forest terrain so that power-up items can automatically be placed
in an appropriate location.

Keywords - shooter game, item placement, forest terrain, CNN, Global Average Pooling

1. INTRODUCTION

Nowadays, the shooter game is a popular game genre that can be played from a third-

person or first-person perspective. In the shooter game, there are supporting objects for players
to achieve their goal called items. The items are game objects with different functions according
to the shape, size, and location. There are two types of items, namely functional items and
aesthetic items. Functional items can change the state behavior of the player in gameplay.
Therefore, the player can play an important role to make the game progress better, while
aesthetic items only change the appearance of the player avatar in the game [1].

One of the functional items in the shooter game is power-up items. In a shooter game,
power-up items can provide more powerful abilities to players, some of which include ammo,
extra lives, and invulnerability [2]. The placement of this item is not randomly placed somewhere
in the 3D game world or in a place that is easily found by the player. These items must be in a
strategic location from the player walkable path. Thus, the players are still feel challenged in
solving problems in the game. Conventionally, the items were placed manually by technical
artists [3].

A technical artist who places these items must understand what type of items should be
put in the right place. This can be very troublesome for a technical artist because the right place

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

48

can vary in location and shape. One of the challenging game world for a technical artist to put
the power-up items is the forest terrain. In forest terrain, there some hidden locations or
locations with shapes that are difficult to distinguish to determine whether this place is suitable
to put items or not. The placement of power-up items on the forest terrain is also implemented
in well-known games such as Star Wars Battlefront 2, Tomb Raider Reboot, Uncharted 4, and
Ghost Recon Breakpoints.

While the job of placing these items always assigned to the technical artist, it might need
a long time and more costly to finish the game levels [4]. Because at different game levels there
will be different shapes of forest terrain. Besides that, in the process of developing a game, we
must be able to minimize time and produce interesting levels [5]. However, the placement of
these items should not interfere with the main objective of the level and should be able to
support the player to achieve that main objective [6].

A few studies have focused on automatic or procedural item placement. The rules-based
procedural method has been demonstrated for items in RPG games [7]. There are two types of
algorithms, rule-based randomized and fully randomized for procedurally generating items in
the game. In comparing the performance of the two algorithms, the rule-based randomized
algorithm is proven to be better in implementation.

Some other research is determining the correct location of the item placement
automatically. It is based on the path pattern of the player activity to reach a goal in the
platformer game [8]. A level of the platformer game has illustrated as a grid where some items
are placed in the form of coins. The starting and ending positions of the item placement are also
determined along with the path the player can reach. Then, it looks for the closest distance
between the placement path and the final position of the grid. If there are no coins in a grid with
a certain priority, the coins will be moved to the next grid position.

The study which is closest to this work may be conducted by the weapons placement
generator in First Person Shooter (FPS) game [3]. In this study, the weapons in the FPS Game will
be classified into the placement category which is divided based on several things such as name,
description, weapon consequences, and level patterns of weapons use. In this case, the
placement of weapons conducted by the technical artist is very crucial. It because the placement
of weapons in the right place by a technical artist can help players to choose the right weapon.

In this study, we focus on the placement of power-up items in the Shooter Game with a
forest terrain environment as background captured visually. The visual data is obtained by
scanning the existing forest terrain into pieces of an image. From the pieces of an image, a
Convolutional Neural Network (CNN) is applied to classify whether the power-up items are
suitable to be placed in there or not. In this way, the placement of the power-up item can be
done automatically without having placed by the technical artist manually.

2. RESEARCH METHOD

The methodology of automatic item placement consists of several stages shown in Fig.

1. First, generating the forest terrain using procedural terrain generator then scanning a suitable
area with a camera. Second, getting the image spatial data from capturing every part of the
forest terrain by a camera-like game object. Third, Collecting and labeling the image datasets
manually. Forth, configuring CNN architecture. Fifth, training the dataset using CNN to find the
best model. Sixth, selecting the best model and placing the item based on that model
automatically.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

49

Figure 1. The Methodology of Automatic Item Placement

2.1 Forest Terrain Preparation and Scanning

Unity game engine proposed to implement the entire game system. The terrain can be
created manually or with additional plugins in Unity. Gaia Terrain Generator was chosen as an
additional plugin because it can automatically generate terrain levels with only a few
configurations settings by the developer. Thus, the process of forming a terrain will be easier
than having to create a terrain from scratch. In this case, forest terrain has been chosen as a
terrain model. It needs several forest terrain samples to be scanned and to obtain cutout images
of the captured forest terrain. These forest terrains are required for the formation of the
datasets. The number of generated forest terrains is 32. Each forest terrain has a resolution size
of 2048×2048 pixels.

The process of scanning the forest terrain to produce captured cutout image data is by
positioning the camera-like game object on the top of the terrain. The camera object position
must be located at a certain distance so that the terrain is filled with the camera field of view.
To provide desired results, the process of scanning each forest terrain is carried out into 8
horizontal and vertical paths. In Fig. 2, the red line shows the horizontal path and the blue line
shows the vertical path with the camera facing down. The forest terrain then applied with the x,
y, and z positions of 0. While the camera field of view configured at 15 with initial positions x =
33, y = 125, and z = 19 along with rotation only on the x-axis = 90.

After the initial camera conditions have been prepared, then we need a method to
obtain each captured cutout forest terrain image. The method is translating the camera position
horizontally and vertically to capture each terrain area. Switching the camera position
conducted with the offset of the captured area. Because the camera movement is horizontally
or vertically changing, so one forest terrain can produce 64 pieces of captured image data.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

50

Figure 2. Forest Terrain Scanning Path

2.2 Data Acquisition and Labelling

Labeling the images data conducted after each required data has been collected. There
are two labels on each image, namely positive and negative images. Positive images are cutout
images of the forest terrain that contains a suitable place which is the right place to put power-
up items. In contrast, negative images are cutout images of the forest terrain containing an
unsuitable place for the power-up items to be placed.

Positive images regulation follows the considerations in Shadow of Tomb Raider and
Uncharted 4 games. Table 1 show the rules for placing power-up items inspired by the Shadow
of Tomb Raider and Uncharted 4 games from the player or forward point of view.

Table 1. The Item Placement Rules from a Forward Point of View

No Item Placement Rule

1 Item place under a tree inside the forest and between the rocks.

2 Item place on the rocky ground at the end of the forest.

3 Item place inside a shallow puddle.

4 Item place on the rocky plateau at the cliff.

However, Table 1 contains a rule that is viewed not from the top of the terrain. Because
the camera object position is the top and facing down, so the rules in Table 1 are adjusted to the
rules shown in Table 2.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

51

Table 2. Rules for positive captured image labeling from the top viewpoint

No Item Placement Rule

1 The captured image was so many trees and little rocky ground at side.

2 The captured image was a few trees and rocky ground at the end of the forest.

3 The captured image was so many trees and some shallow puddles.

4 The captured image was a cliff edge dominating.

Positive images are collected measly compared to negative images. From 32 forest
terrain can produce a total of 2048 captured images. Each image has dimensions of 128×128.
Because the positive images collected by 552 then selected negative images also 552. Thus, the
total data are 1104 images. Afterward, the data augmentation was performed by rotating the
image by 90 and 180 degrees. Consequently, the number of images increased to become 3312
images collected. It is divided into 2184 train data, 728 validation data, and 400 test data.

2.3 CNN Architecture Setup

After the image datasets have been collected, then it is trained using CNN. CNN
algorithm is commonly used for visual classification and recognition tasks in various fields [9].
The CNN ability is processing visual information inspired by the human biological brain system
[10]. There are several benefits of CNN when applied to games, such as increasing game
interaction [11], detecting glitch [12], controlling NPC behavior [13], recognizing game objects
[14], and improving gameplay [15].

Because each cutout data of forest terrain is a colored image, so the number of channels
in the input layer is three related to the image color channels, namely red, green, and blue [16].
The proposed CNN architecture consists of three convolution layers, three max-pooling layers
[17], one Flatten or Global Average Pooling layer [18], one fully connected layer, and one output
layer. The Rectified Linear Unit (ReLU) activation function [19] also applied to the convolution
layer and fully connected layer. Meanwhile, the output layer uses the sigmoid activation
function.

Convolution Layer 1 is composed of a 5×5 kernel with the same padding, 64 Feature
Map, and a ReLU activation function. Then it followed by Max Pooling Layer 1 with the pooling
size of 2×2 and valid padding. Convolution Layer 2 is composed of a 3×3 kernel with the same
padding, 256 Feature Map, and ReLU activation function. Then it is followed by Max Pooling
Layer 2 which has the same configuration as Max Pooling Layer 1. Convolution Layer 3 and Max
Pooling 3 are the same as convolution configuration Layer 2 and Max Pooling 2. The flatten layer
or Global Average Pooling and the number of units in the fully connected layer will be explained
later in Section 3.

In classic CNN, the flatten layer is designed by performing feature maps transformations
on a single vector. Instead of doing this, the average computation applied for each feature map
and then transformed into a single vector. This is the idea of composing the Global Average
Pooling layer [18]. The advantage of Global Average Pooling can form a category confidence map
where the map features correspond to the class category. Besides, the Global Average Pooling
layer avoids overfitting because there is no parameter optimization process.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

52

The last pooling layer in this architecture contains 256 feature maps, with each
dimension size of 16×16. Let 𝑓𝑘 represent the activation map, where 𝑘 ∈ {1, … ,256}. Global
Average Pooling layer reduces the size of the preceding layer to 256 units by taking the average
of each feature map. Alternatively, when using a flatten layer, the size of the preceding layer
becomes 65536 units.

2.4 CNN Training

The training process consists of two stages, namely forward propagation and
backpropagation. The forward propagation is the feed-forward calculation from the convolution
layer 1 to the output layer. The feed-forward means the output from the previous layer will
become the input for the next layer, and so on until the output from the last layer. The
calculation involving parameters that have been previously initialized with random values. After
forward propagation, the results from the last output layer are compared with the desired
output or label so that a loss value will be generated. Because the last output layer consists
single unit and it uses a sigmoid activation function, the loss calculation is solved by the binary
Cross Entropy Error, as in

ℒ = −(𝑦 𝑙𝑜𝑔(ŷ) + (1 − 𝑦)𝑙𝑜𝑔(1 − ŷ)), (1)

where ŷ are the desired output value and 𝑦 is the predicted output value.

The backpropagation process is to calculate the error gradient of the loss function to all
the parameters by finding the partial derivative of the function. It is conducted from the output
layer back to the input layer. This process intends to readjust each parameter based on the loss
value obtained during the forward propagation. The next step is to update the parameters of
𝜃. Parameters updates using Adam's optimization [20] at timestep 𝑡 calculated as

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1), (2)

�̂�𝑡 = 𝛽2 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 (1 −⁄ 𝛽1
𝑡), (3)

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2 (1 − 𝛽2

𝑡),⁄ (4)

𝜃𝑡 = 𝜃𝑡−1 − 𝛼
�̂�𝑡

√�̂�𝑡+𝜖
 , (5)

where 𝛽1, 𝛽2 ∈ [0,1] are exponential decay rates, 𝛼 is learning rate, �̂�𝑡 bias-corrected first-
moment estimation, and 𝑣𝑡 bias-corrected second raw moment estimated. The update biased
first moment �̂�𝑡 and second raw moment 𝑣𝑡 estimate calculated by the gradient errors ∇𝜃 with
related to the stochastic objective function 𝑓𝑡(𝜃𝑡−1).

Besides that, the whole training was carried out in a mini-batch fashion with a batch size
of 32. The process of feedforward propagation, backpropagation, and weight updating with
Adam was carried out repeatedly to minimize the loss function. Thus, the network will be able
to find the optimal parameters so that it will be able to distinguish which cutout image of the
forest terrain is positive or negative.

3. RESULTS AND DISCUSSION

3.1 Experimental Scenarios

The experiment in this study is evaluating the CNN architecture with three convolution
layers and three pooling layers as described in Section 2. There are different experimental

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

53

scenarios which affected the architecture. First, the number of units in a fully connected layer.
Second, the use of the Global Average Pooling layer instead of the Flatten layer. Third, different
learning rate hyperparameters in Adam optimization. Table 3 shows the details of the
experimental scenario.

Table 3. Experimental Scenarios Configuration

Id FC Layer Flatten Layer GAP Layer Learning Rate

1 256 False True 0.0005

2 256 False True 0.0001

3 256 True False 0.0005

4 256 True False 0.0001

5 482 False True 0.0005

6 482 False True 0.0001

7 482 True False 0.0005

8 482 True False 0.0001

3.2 Experimental Result

CNN training scenarios implementation in Table III is trained by a GPU Nvidia GTX 1070.
In this study, we analyze the effect of the different number of units on the Fully Connected Layer.
Besides, the use of the flatten layer and Global Average Pooling will also be considered. The last
one is analyzing two variants of learning rate values. The training involving the train and validation
dataset with a total sample of 2912 data. This training process is carried out with 20 epochs. Fig.
4 depict the results of the loss values for each experimental scenario during the training.

Figure 3. Loss values during the training

The different setting of a fully connected layer is not too significant in minimizing the loss
value. Similarly, the learning rate of 0.0005 or 0.0001 has no significant effect, but if it less or
more that that value, the training process became unstable. The validation loss results always try
to decrease when CNN applies Global Average Pooling as presented in scenarios 1, 2, 5, and 6.
Other scenarios that did not apply Global Average Pooling, make the training unstable and tend

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

54

to increase the loss value when the training reach about a quarter of the total epoch passed. It
has an impact on increasing accuracy. It means the network can generalize the patterns during
the training process. The result of the validation accuracy in each test scenario during the training
process is shown in Fig. 4.

Figure 4. Accuracy values during the training

The consequence of the network fails to reduce loss in every scenario that does not apply
Global Average Pooling is the result of validation accuracies are overfitting. The training accuracy
has a good shape, but the validation accuracy tends to be flat starting from the fifth epoch. When
the training process complete, each scenario model will be saved at local storage. The final
evaluation is applying the test data of 400 samples for each stored model. Table IV depicts the
final accuracy achieved for each scenario model.

Table 4. Accuracy Result

Id 1 2 3 4 5 6 7 8

Accuracy 88 86 80 78.2 90.5 85.7 75.5 79

3.3 Model Selection and Power-up Items Placement

The best model with the highest accuracy is the fifth scenario as shown in Table IV. The
best model must be converted into a file format that can be understood by the Unity game
engine. We use the Unity Barracuda plugin to become an inference engine. One of the supported
formats in Unity Barracuda is Open Neural Network Exchange (ONNX). Before the best model is
converted into an ONNX file format, it must be saved as a hierarchical data format.

When the best model becomes an ONNX file format then it stores as a Unity game asset.
Unity can automatically detect the file and display the model description in the inspector
window. The model cannot be used directly. It must be linked using the Unity script with the
support of the C# programming language. Then, with a similar mechanism as forest terrain
scanning described in Section 2, a cutout image of forest terrain was obtained. The cutout image
and the spatial point is temporarily stored in a specific directory. The spatial point means the
midpoint of the image data captured by the camera because power-up items will be placed with
a certain offset radius.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

55

A cutout image then applies the previously selected ONNX model to classify whether
power-up items can be placed at the spatial point or not by using a forward propagation
calculation. It was conducted linearly from the first cutout image to the last cutout image. In this
case, we use a third-person shooter game perspective as a game simulation. Fig. 5 shows the
power-up items which have been placed in its rightful position. Fig. 5 shows a power-up Item
that has been successfully placed in the middle of the forest and the reachable puddle. The
power-up items may appear hidden but it still can be reached by the player.

Figure 5. Location After Items Placed in Game

4. CONCLUSION

Power-up items placement in shooter game is more time consuming and high cost to

handle manually by technical artists. We proposed the approach which tries to mimic a human
artist when he finds a suitable area to place an item visually. A CNN can be used to classify
whether certain locations on the forest terrain are suitable to place power-up items or not based
on a captured cutout image of the forest terrain. The captured cutout image of the forest terrain
obtained from a camera that is placed on top of the forest terrain and moved it vertically and
horizontally. There are eight experimental scenarios with different CNN architectures to find the
best classification model. The similarities of the eight scenarios are in the convolution and
pooling layers. After experimenting with eight different CNN architectural scenarios, there is a
high accuracy result if the CNN architecture implements Global Average Pooling.

The fifth experimental scenario gets the best accuracy results, namely 90.5. This
accuracy value greatly affects how the system will correctly classify whether the forest terrain
image pieces are suitable for placing power-up items. The training model from the fifth scenario
then applied to the Unity game engine. Then each image captured by the camera will be
classified by the fifth scenario model by storing the spatial location of each image. The power-
up items can be placed automatically at the spatial location point, where the spatial location
point is in the middle of the classified image. Therefore, using CNN to place power-up items on
forest terrain can accelerate and reduce costs in game development.

REFERENCES

[1] M. McCaffrey, The Evolution and Social Impact of Video Game Economics , vol. 36, no. 3.

Lexington Books, 2020.
[2] S. Rogers, Level Up!: The Guide to Great Video Game Design, 1st Editio. Wiley, 2010.
[3] R. Giusti, K. Hullett, and J. Whitehead, “Weapon design patterns in shooter games,” ACM

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 5 No. 1, 2020, pp. 47 – 56

56

Int. Conf. Proceeding Ser., 2012.
[4] J. Taylor and I. Parberry, “Randomness + structure = clutter: A procedural object

placement generator,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 6972 LNCS, pp. 424–427, 2011.

[5] T. Le Dang, “Level Designing in Game Engine,” 2017.
[6] E. Andersen, Y. E. Liu, R. Snider, R. Szeto, S. Cooper, and Z. Popović, “On the harmfulness

of secondary game objectives,” in Proceedings of the 6th International Conference on the
Foundations of Digital Games, FDG 2011, 2011, pp. 30–37.

[7] C. K. On, N. W. Foong, J. Teo, A. A. A. Ibrahim, and T. T. Guan, “Rule-based procedural
generation of item in Role-Playing Game,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 5,
pp. 1735–1741, 2017.

[8] A. Sarkar, V. Sriram, R. Padte, J. Cao, and S. Cooper, “Desire path-inspired procedural
placement of coins in a platformer game,” CEUR Workshop Proc., vol. 2282, 2018.

[9] W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review,” Neural Comput., vol. 29, no. 9, pp. 2352–2449, Sep. 2017.

[10] G. W. Lindsay, “Convolutional Neural Networks as a Model of the Visual System: Past,
Present, and Future,” J. Cogn. Neurosci., pp. 1–15, Feb. 2020.

[11] D.-S. Tran, N.-H. Ho, H.-J. Yang, E.-T. Baek, S.-H. Kim, and G. Lee, “Real-Time Hand Gesture
Spotting and Recognition Using RGB-D Camera and 3D Convolutional Neural Network,”
Appl. Sci., vol. 10, no. 2, p. 722, Jan. 2020.

[12] C. Garc, K. Tollmar, and L. Gissl, “Using Deep Convolutional Neural Networks to Detect
Rendered Glitches in Video Games,” in Proceedings of the Sixteenth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20) Using, 2020.

[13] E. S. Soares and V. Bulitko, “Deep Variational Autoencoders for NPC Behaviour
Classification,” in 2019 IEEE Conference on Games (CoG), 2019, vol. 2019-Augus, pp. 1–4.

[14] V. Reno, N. Mosca, R. Marani, M. Nitti, T. D’Orazio, and E. Stella, “Convolutional Neural
Networks Based Ball Detection in Tennis Games,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, vol. 2018-June, pp.
1839–18396.

[15] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep Learning for Video Game Playing,”
IEEE Trans. Games, vol. 12, no. 1, pp. 1–20, Mar. 2020.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017.

[17] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional
architectures for object recognition,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
6354 LNCS, no. PART 3, 2010, pp. 92–101.

[18] M. Lin, Q. Chen, and S. Yan, “Network In Network (paper),” arXiv Prepr., p. 10, Dec. 2013.
[19] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in

Convolutional Network,” May 2015.
[20] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf.

Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, Dec. 2015.

