
Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 3 No. 1, August 2018, pp. 1 – 12
DOI:

An Automated Testing Framework for Cross-
Browser Visual Incompatibility Detection

Zhen Xu1, James Miller*2

Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Canada

E-mail : zxu3@ualberta.ca1, jimm@ualberta.ca*2

*Corresponding author

Received 8 December 2015; Revised 10 February 2016; Accepted 2 March 2016

Abstract - Due to the rapid evolution of web applications and computer techniques, visual
incompatibility of web pages has become a problem across different browsers and platforms
influencing the functionality of the web applications. At the present, researchers have made
progress to address such issues; in addition, many commercial tools have emerged as well.
However, drawbacks still exist in the existing work, where fully automate testing at the system
level is still not achieved. In this paper, we attempt to propose a framework to detect the cross
browser visual incompatibilities automatically. Highlights of the proposed framework include
template based case organization, version based automation, and similarity embedded
incompatibilities identification.

Keywords - Automated testing; Visual incompatibility; Visual similarity

1. INTRODUCTION
Web applications have become more and more popular nowadays. Compared with

traditional applications with a client-server architecture, they are cross-platform, fully-
functional, and easier to deploy (ready-to-use and no installation or configuration required).
Developers of web applications, work hard on the goal of providing a universally identical user
experience. However, due to the incompatibilities among browsers (and platforms), this goal is
difficult to achieve. Visual differences of a web page rendered across browsers, in some cases,
are expected or acceptable (such as fonts of text). However, in many other cases, they are
incorrect and therefore may cause reading problems (such as missing or incorrectly presented
content). The latter inconsistencies are considered as the cross-browser visual incompatibility
(VI) in this paper.

The test of a web application to identify such VIs can be conducted manually, by
reading and comparing each page through all the target browsers. This activity is highly
manual and thus cost-intensive, time-consuming, and in many cases error-prone. On the one
hand, a fully functional web application usually contains thousands of web pages, which makes
it impossible to test all of them manually. On the other hand, many of the web pages are
rendered from the same template, hence testing each of these pages is a repetitive and
unnecessary task. In this paper, we propose an automated testing framework to solve these
problems. The highlights of the framework include:
• template based case organization – extract different web pages rendered by the same

source template as a single test case;
• version based automation – rerun the test case when changes of the source code are

detected; and

1

• incompatibility identification with similarity estimation – provide both the list of visual.
Incompatibilities and the quantitative similarity score for each pair of browsers.

The rest of the paper is organized as follows. Section 2 discusses related work,

including the advantages and limitations of currently existing cross-browser testing tools.
Section 3 describes the automated testing framework. It covers VI detection algorithm and the
automation schemes. Section 4 illustrates the automated testing tool. Section 5 concludes the
current progress and presents the future work.
2. RELATED WORK

In this section, we will review existing research and tools regarding cross browser
testing of web applications and web pages. There are many testing tools related to this area in
the market. We will describe each in detail in this section by pointing out their pros and cons.

The research papers in the literature, regarding this area, are limited. Mesbah and

Prasad [1] propose an approach to automatically analyse web applications under various
browsers and present the observed discrepancies on a pairwise basis. Choudhary et al. [2]
investigate cross browser issues and propose an approach to automatically detect these issues
based on differential testing. They implement their approach in the WebDiff tool with
acceptable number of false positives. Later, they propose a more comprehensive tool, namely,
CrossCheck, based on the WebDiff and the CrossT. The CrossCheck tool [2] combines the
benefits of WebDiff and CrossT, and can provide both visual difference detection and
functional difference detection. Subsequently, they present another tool called X-Pert [3]. In
these models, they divided the detection of VIs into three aspects: structure XBI (cross-browser
incompatibility) detection, text-content XBI detection, and visual-content XBI detection. The
structure XBI detection employs the “alignment graph”, which records the hierarchical and
geometrical information of each DOM element (e.g., element 1 is above element 2 and they
are left and right aligned). This is a novel idea of XBI detection as it narrows down the numeric
coordinates of elements into a limited number of relations based on the relative position. The
text-content XBI detection compares the text of elements. The potential problem of comparing
textual strings is that in a multi-language web page scenario (e.g., the English and the French
version of Google’s home page), text is not the core content, and thus the pages are similar to
users/developers while the comparison results suggests dissimilar, leading to false positive
results. The visual-content XBI detection takes the screenshot images as the input – the images

of the leaf DOM elements only, to be precise – and compares the colour histogram using 2
distance. The limitation of it is that leaf elements represent only part, and in many cases only a
small part of the whole page; and using colour distribution to determine image similarity
ignores the actual content, thus may also raise false positive results.

Figure 1 shows three tools that only support cross-IE incompatibility detections. The

Expression Web SuperPreview supports only versions of IE 6 and 7 (IE 11 is in the list, but actually

not supported). It provides functions such as side-by-side comparison, window size customization,

and DOM inspection. The side-by-side comparison enables us to compare web pages with different
browsers intuitively and conveniently on a single screen. The window size customization allows us

to change the width and height of the view port to simulate different devices and screens. With the

DOM inspection function, we can investigate the web pages in a responsive way. This tool returns

error on many web pages (marked by the yellow circle in the figure); and when the page preview is

acquired, it is limited in the current view port. Content outside of the view port will not be

rendered (as shown in the blue circle). IETester can perform side-by-side comparison, but lacks in

window size customization. With the extension of DebugBar, it can also perform DOM inspection.

Although most versions of IE are claimed to be supported, many return errors. IE NetRenderer can
only draw web pages with the target version of IE to generate screenshot image. Therefore, it

provides no side-by-side comparison or DOM

2

Inspection. By investigating the tool, we also observe that it does not support window
customization.

(a) Expression Web SuperPreview (b) IE NetRenderer

(c) IETester
Figure 1. The Three Tools for Cross-IE Incompatibility Detection

Browsershots, Browsera, BrowserBite, BrowserStack, and CrossBrowserTesting are five
tools that support multi-browser and multi-platform detections. This meets the minimum
request for VI detection. For the input, only Browsera can take multiple URLs as the input,
while all the other tools allow only one URL per test. Thus, for web application developers to
conduct full-site tests, most tasks will have to be performed manually. Also, Browsershots,
BrowserStack and CrossBrowserTesting provide configurations to customize window size. As
for the detection, Browsershots, BrowserBite and BrowserStack load a web page with all
selected browsers and then simply take all the screenshot images as the results, without doing
any VI detection. On the other hand, Browsera and CrossBrowserTesting provides both
screenshot images and detection reports, as shown in Figure 2.

(a) Browsera (b) CrossBrowserTesting
Figure 2. Detection Reports of Browsera and CrossBrowserTesting

Browsera reports all the detection results into one page, where the web page drawn
by selected browsers are all displayed in side-by-side sub-frames. The identified differences are

3

also listed. When the cursor is hovering above an identification, the corresponding element in
each page will be highlighted. CrossBrowserTesting displays detection results in two pages,
namely the summary view and the side-by-side view. After selecting a browser as the baseline,
the summary view lists the number of differences between it and each of the remaining
browsers. If the detection reveals that all browsers display the web page identically, then this
summary is sufficient; however, if there exist VIs, the user can find details from the side-by-
side view, where only the pages drawn by two selected browsers are displayed followed with a
list of differences. When a difference is selected, the corresponding elements in the two pages
are highlighted.

For web application developers, a good automated testing framework should be able

to create test cases that cover all web pages automatically, run the tests automatically, and
report test results automatically and accordingly. The aforementioned tools: a) all render web
pages automatically, however only some of them can perform VI detection automatically; b) all
of them take manual inputs, making it difficult to conduct full-site testing automation; c) only
some of the tools automatically creates identification reports; and d) none of them support
regression tests for web applications that are in development (BrowserBite supports schedule
configurations that repeat the test daily or weekly, however the option is limited to every 15
minutes, and updating the schedule does not work correctly).
3. AUTOMATED TESTING FRAMEWORK

In our previous work [4], we developed a method to calculate the quantitative visual
similarity of two web pages. The present paper extends this method by adding an extra step to
identify different elements between the two pages, and uses the extended method as the core
function of the automated testing framework to detect VIs.
3.1. Automated Page-Level Detection of VIs

The page-level detection employs the above extended method as the core function of

the proposed testing framework. This method extracts block trees from the web page
rendered by two different browsers, and uses the two block trees to detect VIs.
3.1.1. Block Tree Extraction from Web Page

The DOM tree contains all the information from a web page, but only the visible

elements contribute to the visualization of the web page. Therefore, the first step of the block
tree extraction is to remove invisible DOM elements. The next step is to merge semantically
related elements into blocks. This is done by translating and applying the Gestalt laws of
grouping as follows.

• The Gestalt law of simplicity shows people’s tendency to recognize the simplest

representation of objects. To interpret this law, we take each DOM element as the
simplest representation of objects.

• The Gestalt law of closure indicates that people are inclined to construct complete
shapes from incomplete ones. A DOM element is often overlapped by its child DOM
elements, leaving the shape incomplete, but people are still able to recognize it as a
complete rectangle. As such, to interpret this law, we treat all DOM elements as
complete rectangular objects.

• The Gestalt law of proximity states that people have the tendency to group close objects
and separate distant ones. Therefore, to translate this law, we merge elements into blocks
based on this distance. In the web page scenario, we compare the distances between each
pair of adjacent sibling DOM elements, those with smaller distances are
“clustered” into a group, and those with larger distances are separated into different
groups.

• The Gestalt law of similarity illustrates that people are prone to regard similar objects
as a group. Here, similarity refers to the visual features related to background,

4

foreground, and size. If any of a list of sibling DOM elements is different from others in
the above three aspects, we put it into a different group.

• The Gestalt law of continuity describes people’s tendency to group aligned objects. In

other words, if any DOM element is not aligned with its siblings, it is put into a
different group.

• The Gestalt law of common fate reveals that people are inclined to put objects with
the same motion into the same group. To translate this law, we focus on the scrolling
behaviours when it comes to motion trends. Most DOM elements move accordingly
when the user scrolls a web page, but some other elements may stay still, or move
slower or faster. Such elements that do not move in the same way with others are
place into a different group.

• The Gestalt law of symmetry tells us that people tend to perceive symmetric objects as
a single group. Since this law is not common in web pages, we do not consider it in the
present paper.

• The Gestalt law of past experience states that people are prone to rely on past
experience when interpreting objects. Again, we do not consider this law in the
present paper, because it is beyond the scope of web page analysis.

(a) Original Page (b) Analyzed Page

[BODY]: left=0,top=0, ...
|- [FORM,DIV]: left=-1988,top=-1999, ...

| |- [HEADER,DIV,FOOTER]: left=0,top=0, ...
| | |- [DIV,DIV,DIV]: left=0,top=0, ...

| | | |- [DIV]: left=50,top=10, ...
| | | | |- [NAV,DIV]: left=218,top=10, ...

| | | | | |- [UL]: left=276,top=10, ...
| | | | | | |- [LI]: left=276,top=20, ...
| | | | | | | |- [UL]: left=276,top=22, ...

| | | | | | | | |- [A,A,A,A,A,A,A]: left=276,top=22, ...
| | | | | |- [INPUT,BUTTON]: left=802,top=13, ...

| | | |- [DIV]: left=50,top=61, ...
| | | | |- [A,NAV]: left=50,top=87, ...

| | | | | |- [UL]: left=416,top=115, ...
| | | | | | |- [A,A,A,A]: left=436,top=119, ...

| | | |- [NAV]: left=51,top=155, ...
| | | | |- [UL]: left=51,top=155, ...

| | | | | |- [LI]: left=52,top=155, ...

(c) Partial of the Block Tree
Figure 3. The Example of UAlberta’s Home Page

Figure 3 shows an example of the block tree extracted from University of Alberta’s home
page. By applying the Gestalt laws of grouping, the semantically related DOM elements are
grouped into blocks. In Figure 3b, semantically related elements are marked with the same
background colours. For example, as shown in the yellow circle at the lower left part, the news
items are marked with the same background colour. This is because they refer to the same topic.

5

As a comparison, the three boxes in the middle area (marked in the black circle) contain image,
text and buttons respectively, indicating that they are semantically non-related, so they are
marked with different colours. Figure 3c shows partial of the block tree, where each line
denotes a single block. From this figure, we can find that a) the DOM hierarchy is well
maintained in the block tree; b) the root block consists of the “BODY” element from the DOM
tree; and c) some blocks contain only one DOM element while others merge a group of
elements into one block. 3.1.2. VI Detection and Similarity Estimation

The two block trees retrieved from two browsers of a web page are compared to

detect VIs. During the comparison, a tree edit distance (TED) based mapping scheme, the
extended subtree model [5], is employed. An overview of the model is given below:

• Subtree mapping. Regular TED mapping schemes only map tree nodes. However, in a

web page scenario, content elements are stacked up so that lower elements are
always covered by upper elements. Hence, when we see the content of a block in the
web page, it is the content of a subtree that is rooted at the block. Consequently, the
subtree mapping scheme is more accurate approach.

• One-time mapping. If two subtrees are mapped, then they will have common subtrees
(if there are subtrees in them). However, to avoid duplications, we do not map these
common subtrees again.

• One-to-many condition. Regular TED mapping scheme only maps each tree node once.
In the extended subtree model, a subtree of one tree is allowed to be mapped to
several subtrees.

• Subtree weight determination. A subtree mapping has a weight that is equal to the
mean value of the weights of the two subtrees. The weight of a subtree is equal to the
number of nodes that take this subtree as their largest subtree.

The mapping of two block trees reflects the visual compatibilities, i.e., are the two

corresponding blocks similar or not. Therefore, the detection of VIs is to locate blocks that are
not in the mapping results. In other words, blocks that are added, deleted or changed from one
tree to the other tree contain VIs. The quantitative similarity of the two block trees, the
extended sub tree (EST) value, is calculated by (1):

∑ ∈ × ()

 √

∗(,) =

(1)
max(| |,| |)

where, and are the two trees; | | and | | are the sizes of the two trees, which equal to the numbers of nodes in and , respectively; is the mapping results; () is
the weight of the mapping ; is the coefficient to adjust the relation among mappings with different subtree sizes; and is a geometrical parameter to reflect the
importance of the mapping
with respect to the position of block in and . = 1 when the node of and of in have the same depth, otherwise = 0, which is a constant in the range of (0,1).

3.2. Automated System-Level Testing for Detections

System-level testing is designed to evaluate all the web pages in a web application.
The automated testing framework should be able to discover objective functions, trigger
actions, and report outcomes without human intervention. To achieve this goal, three modules
are proposed to construct the testing framework, namely the source parser, the schedule
builder and the result reporter.
3.2.1. Source Parser

The core task of this module is to discover the objective functions. In the web application

scenario, to detect VIs, the objective functions cover all the web pages because all of these pages
must (ideally) be bug-free. Development of modern web applications relies on page templates.
That is, utilizing one template dynamically generates similar web pages. Consider Google’s search
result page, when a user types in “online shopping”, the search result page displays

6

dozens of online shopping related links; and when the user types in “health care”, the page
displays another dozens of links, which are similar in the layout with the previous page except
the details. This is because the search result page utilizes a template that shows different
content according to the inputs. To test a web application, it is useless and impractical to test
all possible web pages. Instead, we only need to test one case for each page template.
Consequently, to conduct automated testing, the practical objective functions should be
narrowed down to include only unique page templates.

Consider a typical Django project as an example, each component app of a Django

project contains a source file named “urls.py”, where all the implemented URL entries are
recorded and linked to the corresponding view methods. The view methods are further linked
to the page templates that are used for displaying actual content. Therefore, in the Django
project testing practice, the objective functions map to all these URL entries. To automatically
test such projects, the source parser should be able to detect all possible URL entries.
Meanwhile, some of these entries contain parameters, and thus, the source parser also needs
to be able to detect these parameters and assign proper values to them. This may require
accessing data models and querying databases.
3.2.2. Schedule Builder

As the name indicates, the schedule builder manages the schedule of testing

automation. During the development of a web application, the source code keeps changing
constantly, and it is necessary to repeat the tests through out the whole development period.

A straightforward solution to automatically repeat the tests is to set up a schedule

based on the time. The second method we proposed to automatically run the tests is based on
the source code changes. Not all the objective functions change all the time, so we should only
re-test those that have changed and ignore those that have not changed. For instance, the
developer may focus on one app of the web application today and another app tomorrow, so it
is unnecessary to re-run tests on the second app. In this case, the schedule builder should
monitor each template, and automatically triggers the actions to re-run the corresponding
tests based on changes of the template’s source codes (for example, re-test after a defined
number of updates to the source code).
3.2.3. Result Reporter

The automatic testing framework runs without human intervention; therefore, once

the results are produced, it is possible for users to ignore their implications if the framework
does not notify the developer. This is acceptable if a test case passes, but when the result fails,
the result reporter module must notify the developer. Content of the notifications include a
true/false assertion (i.e., indicating whether the template page is rendered identically in the
target browsers), a quantitative value of the visual similarity (where 1.0 indicates identical and
0.0 indicates completely different), and a list of differences between the rendered pages.

Priorities must be added to the notifications automatically, and the result reporter

must display the outputs accordingly. This is because automatic repetitions of the scheduled
tests will generate significant numbers of results, and only those failed results (i.e., VIs that
have been detected) require the developer’s attention. If the objective of a test is to confirm
the template is rendered identically by all browsers, then all the results of “true”, “1.0”, or an
empty list of differences are not important. In this case, the priority of these results should be
set to lowest. As the opposite, the lower the similarity value (or the larger the difference list
is), the higher the priority should be.

The difference list is easier to read if it is combined with the side-by-side display for

locating VIs. Therefore, presentation of VIs must be done by rendering the web page in all the
browsers simultaneously and highlighting the identified differences (for example, highlight
them by changing the background colours or by outlining the borders of the related blocks).

7

Figure 4 shows the outline of the automated testing framework, where the green and
yellow rectangles indicate the data and components of the framework, respectively; the green
and yellow arrows denote the data and control flow, respectively; and the blue arrows refer to
the notification flow.

Figure 4. The Automated Testing Framework
• The framework accepts both templates of web applications and specific URLs/HTML

code as the input. Although the templates require extra processing by the source
parser, the specific URLs/HTML code can be directly input in the schedule builder.

• The browser controller registers and manages the supported browsers.
• The schedule builder manages the automation schedule, either by time, or by changes

to the source code, or by both. According to the schedules, its subcomponent, the
action trigger, conducts the testing process, where the sources are passed to the VI
identifier for VI detection and similarity estimation.

• The result reporter collects all the test results, filters them by priorities, and notifies web
application developers selectively. By updating the web pages in the browsers with the
difference list, a side-by-side comparison provides fast location of VIs.

4. AUTOMATED TESTING TOOL
To conduction VI detection, the minimum request is that the automated testing tool

must support multiple browsers and/or multiple platforms. The implementation, hence, is
designed as a distributed system, where a central node communicates with and controls all
leaf nodes. The leaf nodes run specific OSes and browsers and therefore consist of the testing
farm, which renders the target web pages and collects the corresponding source data (i.e., the
block trees). The central node deploys the automated testing tool as well as the target web
application, and performs the testing automation. Figure 5 shows a sequence diagram of the
tool’s testing process.
4.1. Browser and Platform Registration

During the initialization of the automated testing tool, the supported browsers and

platforms are to be configured. The core thread of this distributed system that is located in the

8

central node will send queries to all branches for browser detection. The active leaf nodes will
respond to it with the configuration information, including the name and version of both its
own operating system and installed browsers. Hardware configurations of the machine (either
physical or virtual) could also be included if necessary, such as resolutions of mobile devices.
Figure 6 shows the two initialization dialogs of the tool, where the browser registration
illustrates examples of local browsers.

Figure 5. Sequence Diagram of the Automated Testing Tool

(a) Browser Registration (b) Project Options

Figure 6. Initialization Dialogs of the Automated Testing Tool
4.2. Template Based Test Case Organization

The automated testing tool analyses the source code that encode all the templates

such as the full list of RESTful URLs, and generates test cases for each such template entry. As
mentioned in the previous section, this task is done by the source parser. If necessary, the
source parser will dig further information (for example dynamic content in the URLs, such as
the user ID “MarcoXZh” in “https://github.com/MarcoXZh/”) from sub apps and the web
application’s database. Note this step is project dependant – different web applications require
different strategies for code analysis.

Figure 7 shows example pseudocode of the source parser for Django project analysis.

This algorithm takes a Django project’s project name and root directory as inputs. It searches

9

the “manage.py” script for configurations of installed apps and databases (Line 6 to 8), and
then parses the templates as follows:

1 ALGORITHM ParseSource_Django:
2 INPUT: project name: PN,

3 root directory PN: RD
4 OUTPUT: all template URLs: TS

5

6 config_script = get_config_script(RD.mangage.py)
7 apps = get_installed_apps(config_script)

8 database = get_database(config_script)
9 connect(database)

10 TS = [EMPTY_LIST]
11 FOR EACH app IN apps DO:

12 FOR EACH url, view IN urlpatterns(app.urls.py) DO:
13 IF contains_django_variables(url) THEN:

14 variables = retrieve_variables(url)

15 model = retrieve_model(view)

16 sql_table = retrieve_sql_table(app.model)

17 values = [EMPTY_LIST]

18 FOR EACH var IN variables DO:

19 value = query(sql_table, var)

20 values.append(value)

21 END FOR

22 replace_all(url, variables, values)

23 END IF

24 TS.append(url)
25 END FOR

26 END FOR
27 close(database)

28 RETURN TS
29 END ALGORITHM

Figure 7. Extracting Templates from Django Projects
1. for each installed app, it checks its “urls.py” script to detect all supported URL patterns

and the corresponding views;
2. for each URL pattern, if it contains variables, then the source parser needs to assign

correct values by querying the view-model-table chain for them (Line 13 to 23);
3. after assigning values to the variables, or if the pattern is a regular URL and contains

no variables, the URL pattern is added to the template list; and
4. the full template list includes all the URL patterns of all the installed apps. Due to the

templates list consisting of URL patterns only extracted from the “urls.py” script, it will

not store duplicated URL entries, and at the same time cover all the supported URLs of
the web application.

4.3. Version Based Automation

Once the templates are extracted from the web application’s source code, the core
thread sends signals to all the leaf nodes according to the predefined schedule for VI detection.
This tool contains both time-driven schedules (i.e., triggers actions after a fixed time) and
change-driven schedules (i.e., triggers actions after a fixed number of changes being made in
the target source codes). Once the predefined time has expired or the predefined number of
code changes has detected, a re-test is triggered. However, if the target source code remains
unchanged (i.e., no changes of source code found by the diff process, or http response code of
the target web page being 304), then the test will be skipped. Figure 8 shows the scheduler
builder of the tool, which combines the functions of template extraction and schedule
configuration. Note the three source entries at the right-side list view are raw HTML code – a
regular URL without variables and a variable-included URL. The “`|$1|`”, “`|$2|`”, etc. are the
variable names, and the corresponding values are stored however not displayed. Testing
frequency of the schedule builder can be configured as either change-based or time-based or
both. Collection of the target test cases’ screenshots can be customized, too.

10

Figure 8. Schedule Builder of the Automated Testing Tool
4.4. Case Study

In this paper, we evaluate the efficiency of the automated testing tool though the case

of University of Alberta’s home page. We run the tool to compare the page in two popular
browsers: Google Chrome version 57 and Mozilla Firefox version 52, and on two platforms:
Windows 10 and CentOS 7. By comparing the results of CrossBrowserTesting and our VI
detection, the following conclusions can be derived:

1. Both CrossBrowserTesting and our automated testing tool can locate VIs of web pages

among different browsers; and at the same time, both can make the correct
conclusion without raising false positives if two versions of a web page are identical.

2. Results of CrossBrowserTesting contains only VIs, lacking in intuitive conclusions to
determine how similar the two versions of a web page are. Thus, if a test result
contains ten small VIs and another test result contains one big VIs, it is difficult to
figure out the priority for developers to start debugging. As the comparison, our tool
calculates the EST similarity, which enables the priority judgement. Table 1 shows the
EST values of the evaluation.

3. During the tree comparison, our EST model maps sub trees instead of nodes, thus it
can avoid potential duplications of VI detection. As previously shown in Figure 2b,
CrossBrowserTesting identified four VIs caused by the X coordinates of the elements.
However, the second and the third VIs are child elements of the element in the first VI.
Due to the mismatch of the parent element’s X coordinate from the two versions of
the page, its child elements consequently mismatch, too, Therefore, the second and
the third VIs are actually a duplication of the first VI. Our EST model, by absorbing
comparisons of child elements and mapping subtrees, prevents such hierarchical false
positives from being detected.

Table 1. EST Similarity Values of the Cross-Comparisons

Browser1 Windows-Chrome CentOS-Chrome Windows-Chrome Windows-Firefox

Browser 2 Windows-Firefox CentOS-Firefox CentOS-Chrome CentOS-Firefox

EST Value 1.0000 1.0000 0.9603 0.9603
5. CONCLUSIONS

Diversity of present web browsers and platforms have brought cross browser issues to
both web users and developers. To detect cross browser incompatibilities, many commercial

11

tools have been developed and relevant topics have gained attention among researchers as
well. In this paper, we target the detection of VIs and attempt to propose a testing framework
to detect these incompatibilities automatically. Three advantages exist in the automated
testing framework. Firstly, the detection of VIs is based on source templates. By doing so, we
narrow down the scale of testing. Second, automation is achieved by schedules based on both
time and changes of the source code, which avoids human intervention and at the same time
this further reduces the test ranges. Finally, the framework provides both a list of VIs (including
a rendered presentation of these differences) and a quantitative similarity value as the result.
This makes it possible to notify web application developers by priorities.

An automated testing tool is designed according to the framework. This tool allows the

registration of browsers on both local and remote machines, and utilizes all these registered
browsers to conduct VI detection. It extracts the templates depending on the type of the target
web application. A Django example is employed showing that this tool can extract both plain
URLs and URLs with variables, where the extraction of the latter is done by querying
information from the web application’s database. Version base automation of the tool is
achieved by both time-driven and change-driven schedules. A case study is presented to
illustrate the efficiency of the extended subtree model by comparing it with the
CrossBrowserTesting. Conclusions reveal that the quantitative values indicate how similar the
two browser versions of a web page are and serves as a reference to debug these VIs; and the
subtree mapping scheme has eliminated duplications of the VI detection results.
ACKNOWLEDGMENT

The authors thank China Scholarship Council (CSC) for the financial support.
REFERENCES
[1] Ali Mesbah and Mukul R. Prasad. 2011. Automated cross-browser compatibility testing.

Proceedings of the 33rd International Conference on Software Engineering. ACM, 561–570.

[2] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Crosscheck:
Combining crawling and differencing to better detect cross-browser incompatibilities in
web applications. 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. IEEE, 171–180.

[3] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2013. X-PERT: accurate

identification of cross-browser issues in web applications. Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 702–711.

[4] Zhen Xu, James Miller. Estimating similarity of rich internet pages using visual information.

International Journal of Web Engineering and Technology 12, no. 2 (2017): 97-119.

[5] Ali Shahbazi and James Miller. 2014. Extended subtree: a new similarity function for tree
structured data. Knowledge and Data Engineering, IEEE Transactions on 26, 4 (2014), 864–
877.

12

