
Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

37

GenTree A Tool For Analysis Of Syntactic Algorithms Based
On Younger Cocke Kasami

Wijanarto*1, Ajib Susanto2, Desi Purwanti Kusumaningrum3
1,2,3Faculty of Computer Science, University of Dian Nuswantoro, Jl. Imam Bonjol 207,
tel.(+6224)3517261/fax. (+6224)3569684
e-mail: *1wijanarto@dsn.dinus.ac.id, 2ajib.susanto@dsn.dinus.ac.id,
3desi.purwanti.kusumaningrum@dsn.dinus.ac.id
*Corresponding author

Abstract - Analysis of syntactic is a series of processes in order to validate a string that is received by
a language. Understand the process of decline of the rules to be a tree is the hard part. This paper
presents the results of the design tools to automate an input string into a decline in the rule until the
tree is in the visualize the image either in the form of a file or display, performance evaluation tools
and analysis of understanding of students against a tool with algorithm Cocke Younger Kasami (CYK)
was chosen as one of the cases for the technique of parsing in a Context Free Grammar (CFG) in the
form of Chomsky Normal Form (CNF). The results of this study showed that the model was
successfully implemented into the application named genTree (Tree Generator), the performance of
the application obtained a significant number of measurements against complexity of the variations
of the input string of grammar and 29.13% with the complexity of 7 and 8.50% with the complexities
of 20, while for the length of the input string against the algorithm processing time can be a value of
3.3 and 66.98% 6.19% 29 and as well as , also obtained the distinction ability of the t-test on the
student group control group experiments with value t calculate = 5.336 with df 74, p-value of 0.001,
in extent significant 0.05% (5%). Also, trap at the increase in the percentage of correct answers
amounted to 58% of the variation is difficult, 83% of the moderate and easy variation. Sebalikanya a
decrease of 60% wrong answers on difficult variations, 100% variation being and 57% on easy
variation. The last change occurred a decrease in the percentage of students who do not practice by
60% on difficult variations, 44% of medium and 13% variation on a variation of easy to conclude that
the applications run efficiently and optimally but also can effectively improve the understanding of
the students in be ajar CYK algorithm with automata.

Keywords —Tools, Analysis, Syntax, Algorithms, Tree

1. INTRODUCTION

Syntactic Analysis is a series of processes in order to validate a string that is received by a

language. Linear representation of a rules or grammar is a technique that ultimately produces a tree
can be represented in a language understood by the computer. The theory of language and
automata (TBO) it is a part which was instrumental in engineering computation on the current
computer. On the other hand the theory of languages and automata difficult to grasp manually
because the algorithms and approaches are very complicated to study [1]. Grammar is part of the
theory of languages and automata, which are represented in linear and is known by the term
parsing, which results in a tree (parse tree) for the analysis of syntactic [2, 3, 4, 5]. This technique will
be the focus for implemented in a paper, with the model of the language into a form of Chomsky
normal form [6]. In addition to known very complicated and slow Its development, both in terms of
algorithms, theory as well as implementation, the existence of TBO is still very central in the
computer science, because without it the computer can't be developed as currently.

mailto:3xxx@xxxx.xxx

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

38

Theory and language automata are the science about device software computer or abstract
machines [5], which useful and great role in applied natural sciences [7]. Within a decade, the TBO
much useful in particular from mathematics, Although not exclusive as in mathematical physics or
applied mathematics. In Science Math, he serves an important part of the functional aspects, the
concept of finite automata and formal grammar used in design and software construction. The main
concept of the generator is producing a way of automation on a method or model, and generators
are in the intent in this paper was routine or special modules that can be used to control the
behavior of the loop or iteration, the translation process is the input of a code or text into a
particular good that can be executed or not [2, 6], through the analysis of the lexical and syntactic,
generated by a grammar. Grammar is a contextual rule syntax with semantics contained therein of a
formal language. The syntax that is used in the paper is the Chomsky-Norm Form (CNF) of a Context
Free Grammar (CFG) [6, 3, 8], where there is a set amount of terminal symbols, the non-terminal,

early and production rules  |N , with N is a non-terminal ,  means consisting of a and a is a

string of terminal or non-terminal that may be empty and symbols | defined as the choice
or alternatively, the set of this called a context-free grammar, the grammar in a nutshell. Language
or grammar determine abstraction syntactic in a set of Abstract Syntax Tree (AST), each a
nonterminal symbol from AST label rules applicable product and grammar do not produce a
sentence to a terminal symbol not instrumental in abstraction syntactic. In General, the level
of grammar can classify into4 (four) according to production rules in Chomsky-hierarchy of grammar
[4], and this paper using CFG type 2 (two). Production rules in the CFG are on the left side there
should only be one non-terminal symbol as follows below.

Figure 1. Production rules in the CFG

The formal definition is important in TBO there are 3, the alphabet (set symbol), string (sequence of
symbols from the set of the alphabet), and the language (a set of strings) [3, 5, 6]. The alphabet is
the set of symbols are limited and are not empty. In General, the notation used is "Σ" (sigma), which
symbolizes an alphabet. The string is a set of symbols is limited from some alphabet. The notation of
string written with "w" while the length of the string notation with with "| w |". Language is a
collection of strings that have no rules (Σ *) and symbolized by "L". Furthermore, another formal
definition used in this paper is parsing i.e. process analyst with syntactic of input data, which is
provided as a text, for determines the structure of a grammar [9]. The output from the process of
parsing i.e. to answer whether string text it contains the given language that describes a specific
grammar. The additional Output resulting from the process of parsing is parsing tree, the
representation of the shape of the tree (tree) of the process of decline (derivation)[4, 10]. Parsing
tree perhaps more important is used in compilers, where data structure the represents the
translation of source program into executable code by following the natural functions and recursive
to support the process of translation, as Figure 2 below.

Figure 2: Parsing Tree

S → AB

A → AA | a

B → BB | b

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

39

There are two techniques for conducting the process of parsing, top-down parsing and bottom-up
parsing [6]. Top-down parsing is a process of formation of the parse tree starting from the root (root)
headed to the leaves (leaf). Bottom-up parsing is the process of formation of the parse tree starting
from the leaves (leaf) headed to the root (root). While in the process of decline (derivation) there
are two approaches, namely leftmost derivation and rightmost derivation [6, 10, 11].

This Paper focus on Cocke Younger Kasami (CYK) algorithm that uses grammatical Context
Free Grammar. The weakness of the algorithm of Cocke Younger Kasami (CYK) is in the language,
must be in the form of Chomsky Normal Form (CNF), there is no empty strings, production units, and
the production of useless [6]. But this issue not become obstacles due to the ContextFree Grammar
can be transformed into a form already Chomsky Normal Form (CNF) [4]. The algorithm of Cocke
Younger Kasami (CYK) represents the structure of the data table (array) or 2 dimensional matrix
shaped triangles, where each entry hold results parsing for a while, then will be used for the next
stage until all the inputted string have been completed [12, 13, 14, 15]. The following is pseudocode
for the algorithm of Cocke Younger Kasami (CYK),

Figure 3: Algorithm Cocke-Younger-Kasami (CYK)

Figure 3 can be explained as follows, input grammar G in the form of CNF and a string w top terminal
alphabet of G, its output in the form of a table T that contains substring every v of strings w, the set
of non-terminal derivatives of v, for example, the property syntactic. At any given moment T showed
us that w is the string from G. Thus, using the notation in the show in Figure 3, which shows a
decrease of the nonterminal from a substring with air...aj from the w at the store in Taj. Syntactic
properties of w can be calculated from the whole of the property syntactic a substring of the string v
w with dynamic programming approach. By storing the non-terminals that scaled back by the v in
the table Tv and counting Two with combined entries stored on Tv according the rules of G and all
possibility of separation from w into m which is a substring of v, where m is the maximum number of
characters on the right side of the rules of grammar.

Thus given the complexity of the analysis of the syntactic subset with the TBO on the CYK
algorithm, then this paper proposes a model of generator to generate the tree from the input string
and the CFG in the form CNF automatically, then realizing the model into a tool that can generate a
decline rules and trees in the form of textual and graphic, as well as measuring the performance of
these tools by providing a variation of input strings and grammar to see the accuracy of the length of
the string the complexities of grammar, and the processing time to generate output that is in want,
and analysis of the level of understanding by doing a trial against a second-year student at the
Faculty of computer science.

input:G=(N,Σ,S,)dalamCNF, string w=a1..an∈Σ
+

CYK(G,w)=

1 for i=1…n do

2 Ti,i := {AN | A  ai}
3 for j=2…n do

4 for i=j-1…1 do

5 Ti,j:=;
5 for h=i…j-1 do

6 for all A  BC

7 if B  Ti,h and C  Th+1,j then

8 Ti,j:=Ti,j {A}

10 if S  T1,n then return yes else return no

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

40

2. RESEARCH METHOD

 The main objective of this paper is the First, making the model and framework of thought to
produce tools that generates tree and decline rules automatically based on input grammar and CYK
algorithms with string, Second, methods development system used to build models and software
architecture involves the structure of the high level of abstraction of system software, by using
decomposition and composition, with the attributes of the style and quality of architecture. A
software architecture design must comply with the functions and performance of the main
requirements of the system, as well as meet the non-functional requirements such as reliability,
scalability, portability, and availability [16], which is implemented with the Unified Modeling
Language (UML) and the tool will generate in the made with java via eclipse IDE
(http://www.eclipse.org/) and the dot [17], as well as Application Programming Interface (API)
GraphViz [18] to connect the dot with java. Third, this paper also attempted, will evaluate the
performance of the resulting tools and test with the variation of the input string and grammar with
particular complexity and timescale process. The fourth, to gauge the level of understanding of
students toward mastery of the material of the lecture automata and language theory section of the
CYK algorithm, using the method of experimental, which is in use to evaluate whether application
implementation results improve understanding for students who use it. Evaluation methods in the
implementation of selected is a method of experimental with the design of a control group without
protest (Posttest Only with Control Group) of the sample population of the two groups (experiment
and control) each of 40 second-year student of computer science faculty University Dian
Nuswantoro, Semarang.
2.1. Model and framework of Thought

The standard model of grammar notation in the paper is the main frame of the application that
will be generated. A notation in the model select model notation is Chomsky Norm Form (CNF) [9].
In general, the model architecture of grammar in use are as in Figure 4 as follows,

Figure 4. Model Tree Generators

Model is composed of three steps namely Notation CNF and string input, which consists of grammar
(context-free grammar) which is already in the form of the input string and the CNF can be received
by grammar, both is the input that will be processed by tree generator and will produce trees, both
visually (image/*.png) and textual (*.txt) and the source code tree for can be customized in the
format *.dot . From the General model like Figure 4 above, may be more developed in never
achieved within the framework of thought in Figure 5 below:

Input CNF dan

String

Generator

Tree

leftmost derivation

rule, ohontree dan

dot

https://ssl.translatoruser.net/bv.aspx?from=id&to=en&a=http%3A%2F%2Fwww.eclipse.org%2F

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

41

Figure 5. The Framework Of Thought Tree Generator

The framework of thought above in Figure 5 describes the method or framework of thought

that will be in use in resolving problems as well as how to conduct an evaluation of the level of
understanding the user (in this case a second year student of the Faculty of computer science),
against subjects automata and language theory, with the case of Cocke Younger Kasumi algorithm in
terms of decrease in the rules, the determination of the abstract tree syntax both visually as well as
textual.

2.2. System Development Method

Applications system developed with a method or a diverse way, this research will use the

approach in developing applications that are Rapid Application Development (RAD), the harness
approach the object-oriented programming with the implementation using the Unified Modeling
Language. Besides, because of its convenience, this technique is also very fast in building medium-
scale systems. As for the design of architecture in general like the picture 6 as follows,

Model

Grammar CNF

Generator

Tree

- Tree

(in textual dan

Gambar)

- LMD

- Source Code

DOT
Antarmuka

GraphViz

Teori dan Bahasa

Otomata

Kemudahan

memahami

Algoritma

CYK

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

42

Figure 6. Tree Generator Architecture

Figure 6 can be described that the input in the form of file grammar in Chomsky Norm Form

and input strings (*.cnf, *.str) will be in the read or in the CYK algorithm with parsing. If all the input
does not match (input validation) then the program finishes. If input validation passes then the next
step is to allocate the matrix or CYK algorithm according to the table. After the input string in check
and accepted by the grammar then it will generate a tree, rules in decline and the source code for
the visual tree. If the input string not in receipt by the grammar, then an error message will be
displayed and will remain in generate tree contained these errors.

2.3. Performance evaluation methods

To evaluate the performance of an application that will do an experiment to measure the
performance of your application in this regard how accurate and fast application can handle
variations in two primary inputs (the input string and grammar) in such a way so as to produce valid
output with processing time. To do this, then created a grammar complexity classification specified
on the basis of table 1 below.

Table 1. Criteria and the complexity of grammar

The
complexity of

the
The characteristics of the Description

Low rule ≤ 5; psi ≤ 5 Low complexity means "easy"

Medium 5 ≤ rule ≤ 15; psi ≤ 10 Medium complexity means "medium"

High 5 ≤ rule ≤ ; psi ≥ 10 High complexity means "Hard"

Setup Input Parameter:

*.cnf –i *.str <[-ot *.txt]|[-oi *.png]|[-o]>

Input

Validation

Input Process:

a. Allocation data matrix for
parsing CYK

b. Processing Input string dan
CNF formed CYK

String

Accepted by

CNF?

Generating Tree, Derivation

and source code

Show Error

Message

Generating

Error Tree

Start and End

Yes

No

Yes

No

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

43

While the number of input strings varies as in table 2 below,

Table 2. The variation of the input string

Variation Length | w | Description

Easy 3 ≤ |w| ≤ 10;
The input string with easy variations in length at
least 3 or at most 10

Medium 5 ≤ |w| ≤ 15;
The input string with easy variations in length at
least 3 or at most 15

Hard 5 ≤ |w| ≤ ;
The input string with hard variations in length at
least 3 or more

The purpose of the evaluation with the above variation is to know the performance of applications
based on the complexity of grammar, length input and speed the process, which is a performance
API Kasi in General.

2.4. Analysis method of understanding

First in the analysis, did to find quantitative data through experimentation, trial results using
design of experiments without protest (posttest only with control group) [19], because of its
convenience in giving special treatment against experiments with test generator tree to work on
problems in supply and control the other groups, as in the following table 3 design,

Table 3. The subjects of the experiment and control Groups Randomly

The subject of the Group Variable bound Posttest

A Experiment X Ye

A Control - Yk

Table 2 will be assigning each subject group of experimental and control group at random (A). Then
just carry out the treatment on experimental group (mark X) whereas in the control group were not
in treatment (sign), and then will carry out experimental group posttest (Ye) and control group (Yk),
to determine the difference in the average value in the earn on Ye and Yk with statistical methods
(test T), so it can determine the significance of the difference in the two groups. Second, simpler
method, in used to support the method [20] before, by measuring student comprehension of the
scale with variations of low, medium, high in answering the question that was given as part of the
experiment, as in table 4 below,

Table 4. The student's level of understanding Scale

Level Of
Understanding

The Percentage Of The Number Of Students
Who Answered Correctly

High 76%-100%

Medium 60%-75%

Low 0%-59%

To get the value in the scale above it needs to be done for Computing Group based on your answers,
the correct answer being students wrong or not answered (absent) in the form of percentages, with
the formula in table 5 below,

Table 5. Formula calculations percentage

The Percentage Of
Answers

The
formula

Description

Correct (Pb)
𝑋𝑏
𝑁
𝑋100% Xb: the frequency of Students answered

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

44

Wrong (Ps)
𝑋𝑠
𝑁
𝑋100% Correctly

Xs: the frequency of Students answered

Wrong

Xa: the frequency of Students answered

Absent

N: Total sample of students

Absent (Pa)
𝑋𝑎
𝑁
𝑋100%

3. RESULTS AND DISCUSSION

3.1.Generator Tree

Based on the model and framework of thought that exist, it can generate in a system
application generator tree which is the implementation of architectural on the previous figure 6,
where generator tree is actually a kernel from the model as the main processor, which consists of 5
blocks are interconnected with one another, the application interface, GraphViz DOT, CYK Algorithm,
Tree Data structure and Error correction of Grammar. The output of the model form 4 file that
consists of a text file (*.txt) and the image (*.png) to store the tree in produce, text file (*.lmd) to
store the tree decline in the order of leftmost derivation, as well as the source code files from the
image file (*.dot) that can be customized later if in need. The following figure 7, which is the building
block of the kernel from the model tree generators are in the box with a red outline.

Figure 7. The Kernel Of Generator Tree

Based on the above, the kernel then obtained as a result of implementation in the form of diagram
Use-case System Tree Generator is an application in the name as genTree which stands for
Generator Tree, and Figure 8 below is the main model of system genTree built in the form of a use
case diagram.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

45

Figure 8. Use Case of Generator Phone

The result of the design of the application will be in the mentioned above in this section. First,
the draft was successfully implemented dang terminal-based applications generate a console with
the name genTree. jar which can be run as shown in Figure 9 below, with output as desired.

Figure 9. Commands and input gentree (a), (b) genTree Output, display window (c)

Figure 9. Example of a genTree.jar application

In Figure 9 is an example of a genTree.jar application usage can be explained as follows,

images (a), is an example of usage of genTree.jar with two input parameters grammar mudah1.cfg
and input the string imudah11.str, other parameters namely – c the intended will issue the output in
the terminal console like the picture (b) and window and display an image (c).

3.2.Performance Analysis

(a) Perintah dan input genTree.jar (b) Output di terminal konsol

(c)

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

46

 While the analysis of the performance of the application tested based on variations of the
input with the complexity of grammar refers to table 1 and 2 which consists of, easy, medium and
difficult to retrieved the processing time of the application for each input as in table 6 below.

Table 6. The Variation And Complexity Of Input

Grammar

Variation G1 G2 G3

Easy

S -> BS | DS | a | b.
A -> b.
B -> SA.
C -> c.
D -> SC.

S -> AB.
A -> CA | a.
B -> DB | b.
C -> a.
D -> b.

S -> AB | BC.
A -> BA | a.
B -> CC | b.
C -> AB | a.

Input
String

aca
aba
abb

aab
aabb
aaaaabbbbb

Bbab
babaa
aabaabab

Medium

S -> CB | DA.
A -> a | CS | EA.
B -> b | DS | FB.
C -> a.
D -> b.
E -> DA.
F -> CB.

S -> ED | CB | DA.
A -> a | CS | EA.
B -> b | DS | FB.
C -> a | DC | FD.
D -> b | ED.
E -> c.
F -> DA.
G -> CB.
H -> ED.

S -> XY | a | b.
T -> AB | XB.
X -> YS | a | c.
Y -> SX | b | c.
A -> a.
B -> b.

Input
String

aaabbabbba
aaabbbaaaaabbbbb
abaaaaabbbbb

cbaba
ccccbaba
ccccbbababa

abbaaccbb
cccbab
aaabcab

Hard

S -> EF | AF | EB | AB.
X -> AY | BY | a | b.
Y -> AY | BY | a | b | c.
E -> AX.
F -> BX.
A -> a.
B -> b.

S -> a | EF | AF | EB | AB |
AS.
X -> BY | SB | SY | a | b.
Y -> AY | BS | a | b | c.
E -> AX.
F -> BX.
A -> a.
B -> b.

S -> AB | AA | AS | AD | b.
A -> CC | a | c.
B -> BC | b.
C -> CB | BA | c.
D -> SA | AS | a.

Input
String

aaabbbb
abaab
ababbbb

aabcb
aaaabababab
aaaaaacbcbcbcb

abbc
aabbaac
abbbaaac

Performance test done by using the following hardware and software, hardware in the form

of an Intel Pentium processor Dual Core E5500 2.80 GHz CPU, 4 GB RAM, 1 TB hard drive and
software in the form of operating system Windows 7 Professional 32 bit, JDK 1.1, Eclipse Kepler, can
describe as in table 7 is the result of research by using a variation of the grammar and input as
shown in the previous table 1.

Table 7. The processing time to the length of the input string

Grammar
𝒕̅ 𝐬̅ 𝒕̅/𝒔̅

Variasi G1 |s| G2 |s| G3 |s|

Easy
1 2.16 3 2.723 3 1.815 4 2.23 3.3 66.98%

2 1.851 3 2.191 4 2.076 5 2.04 4.0 50.98%

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

47

3 2.032 3 2.28 10 2.303 8 2.21 7.0 31.50%

Medium

1 2.356 10 2.293 5 2.979 9 2.54 8.0 31.78%

2 1.841 16 1.575 8 1.95 6 1.79 10.0 17.89%

3 1.653 12 1.778 11 1.638 7 1.69 10.0 16.90%

Hard

1 1.56 7 1.498 5 1.248 4 1.44 5.3 26.91%

2 1.591 5 2.231 11 1.279 7 1.70 7.7 22.18%

3 1.934 7 2.184 14 1.263 8 1.79 29.0 6.19%

There are three grammar which in tested are G1, G2, G3 with each input string test three

variations so that there are 9 (nine) variations of the test input strings with length (| s |) also varies.
From the input grammar and test against the input string on the overall variation obtained

interesting facts that to turn out for the input grammar is easy with the mean of the input string (

character variation) 2.1 easy 1, in execution with the average processing time () 2.23, while for
grammar is difficult with the average length of the input string 29.0 variation 3 is hard, it can be
executed with a speed of 1.79 seconds. The above indicates that the input string length is inversely
proportional to the length of time the process for work done by algorithms based on the CYK
variations. In addition, the average time was late in getting by the variation medium 1 of 2.54
seconds and fastest gain variations hard 1 with a time of 1.44 sec. So in general it can be said that
the average processing time is precisely the algorithm can run fast and can be concluded while the

smaller percentage comparison of average processing time (the average length of the input) with a

string (), in the lowest percentage, gained 6.19% which means the algorithm can process variation
of grammar with the variation is hard and the input string is the longest and highest of 66.98% with
easy .

Meanwhile in the analysis based on the complexity of the Grammarly a, as in the present in
table 8 below, at the got the mere fact that a comparison between the average length of time the
process (t) to the amount of average complexity number rule (r) and production rule option (op),
thus c = r + op as at present in table 7 as follows below :

Table 8. Time the process of with the complexity of grammar

Grammar

Variation
 c

𝒕̅ |r| |op| |r|+|op| 𝒕̅/𝒄

Easy

1 2.23 5 3 8 27.91%

2 2.04 5 2 7 29.13%

3 2.21 4 4 8 27.56%

Medium

1 2.54 7 5 12 21.19%

2 1.79 9 9 18 9.94%

3 1.69 6 7 13 13.00%

Hard

1 1.44 7 10 17 8.44%

2 1.70 7 13 20 8.50%

3 1.79 5 11 16 11.21%

Table 8, can be read as follows, the speed of the process (t) are in variation 1 hard 1.44 sec,

with time to work on the complexity of 17, while the longest time on the variation medium 1 of 2.54
seconds with the amount of complexity. In general the complexity of work done with the lowest
percentage of 29.13% with great complexity of 7, while the highest variation in complexity of the
difficult 2, by 20% 8.50 value worked out with, which means that the algorithm can handle the
grammar with time as its complexity, the greater percentage the more appropriate algorithm in
handling Grammarly a vice versa.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

48

3.1. Analysis of Understanding

There are two analysis in this section as a result of the research in this paper, pour in the
first, the analysis is done by looking at the difference in test results do with experimental techniques
to figure out the understanding of students on courses with a subchapter TBO CYK algorithm in the
get as in the mentioned above at the bottom here.

3.1.1. T-Test

The t-test to find out the difference in the ability to resolve problems in the syntactic
analysis of algorithms based on variation of CYK have been made against the student experiments
using tree generator with students who do not use this control is carried out three times on the basis
of the level of complexity of the variations of the problem , easy, medium and hard. T-test after test
the ability to troubleshoot analysis of syntactic on the algorithm of CYK control group and the
experimental group performed to figure out the difference in the ability to resolve problems with
analysis of syntactic on the algorithm of CYK students after being given the treatment.

The calculation results show that magnitude t count was 5.336 with df=74 obtained p of
0.001. P value less than 0.05 significance level (p = 0.001 < 0.05). Thus, the t-test results show that
passes the ability to troubleshoot analysis of syntactic on the algorithm of CYK group control and
experimental groups produce different data and there is a significant difference. The difference in
the average score increase data the ability to troubleshoot analysis of syntactic on the algorithm of
CYK control group and the experimental group performed to find out the score increases the ability
to troubleshoot analysis of syntactic on the algorithm of CYK between experiments using generator
tree with a control group who did not use tree generator. The results of calculation show that the
average score on the abilities of the group control is 62.14 while in the group experiment was 77.38.

Thus, there is a difference in the average of the 15, showed a rise in score ability resolve
problems analysis of syntactic on significant CYK algorithm between a group of experiments using
generators and a control group who did not use tree generator. This indicates that after being given
the treatment with the experimental group tree generator more increase when compared with the
control group. Increased ability to resolve problems with analysis of syntactic on the experimental
group of CYK algorithm shown their answers based on the analysis amplifier is understanding of the
interpretation of this section.
3.1.2. Percentage Of Understanding

While the percentage of the level of understanding of students ' answers to the questions
made in reference to table 6 with variations of complexity and input the string as shown in table 1
and 2, then gained the following results in table 9 below,

Table 9. Presentation answers the student control and experiment

Variation
Control Experiment

Correct Wrong Absent Correct Wrong Absent

Hard
14 10 15 24 6 9

35% 25% 38% 60% 15% 23%

Medium
25 5 9 30 5 4

63% 13% 23% 75% 13% 10%

Easy
24 7 8 34 4 1

60% 18% 20% 85% 10% 3%

Table 9 can read as follows, there are two groups of subjects, namely the control groups of students
(students learn CYK without tree generator) and the experimental groups of students (students who
study CYK with tree generator). Test results against students control on the variation of the problem

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

49

is difficult, there are 14 students who can answer the question correctly, 10 and 15 abstentions from
a total of students. While the question is being answered right there by 25, 5 and 9 abstentions,
while for a matter easy of 24 right, 7 and 8 abstentions. Being on the Group experiment perilous
(24.6 and 9), medium (30.5 and 4) and easy (34.4 and 1).

By calculating the difference between the results obtained in the student's answer against
variations of questions made earlier, which is to be tested on students prior been a treatment
(control) and after the students were given a treatment (experiment), then get the result as
mentioned above on where in table 10 below.

Table 10. The change of Student Understanding

Variation Correct % Wrong % Absent %

Hard 10 58% 4 60% 6 60%

Medium 5 83% 0 100% 5 44%

Easy 10 83% 3 57% 7 13%

Imaginary distinction in the hard matter of variation of 10 (58%), 4 (60%) and 6 (60%) to correct,
wrong and absent. While variations are there is a difference of 5 (83%), 0 (100%) and 5 (44%), while
variations easily produce a difference of 10 (83%), 3 (57%) and 7 (13%). Need to take note that the
difference in the answers is true to its positive meaning, there is increasing, while in the wrong and
absent its nature negative means decreasing.

4. CONCLUSION

From exposure to problems, methods and results and analysis in the previous section in this paper
the author while can conclude that:
1. The Model proved to be implemented and produce applications with efficient performance

which the algorithm can work on variations of the complexity of grammar (29.13% with the

complexity of 7 and 8.50% with the complexities of 20) and input strings, for a length of 3.3 and

66.98% and 6.19% 29 and, compared with the time of processing.

2. Based on analysis of T-Test score after test between the control group and the experimental

group performed with the help of the program SPSS and the calculation of earned value t

calculate = 5.336 with df 74, in extent significance 0.05% (5%). T-Test results after test CYK

algorithm ability to resolve problems in the control group and experimental group produces the

value p of 0.001. P value less than 0.05 significance level (p = 0.001 < 0.05), so you can conclude

there is a significant difference in the students prior to using the application generator trees

with after using it.

3. On the basis ability to troubleshoot syntactic analysis on the algorithm of CYK then it can be

proved that there is an increase in the ability of 58% at the correct answer with hard variations,

83% of the moderate and easy variation of the problem. Whereas as a consequence happens a

decrease of 60% of students work on hard variations, variations are 100 and 57% on easy

variation. The last change occurred a decrease in the percentage of students who do not

practice by 60% on difficult variations, 44% of medium and 13% variation on a variation of easy.

So we can conclude that there is a significant change in the understanding of the views of the

students answer presentation control of student experiments in working on the issue given a

particular variation, the increase in the percentage of correct answers and a decrease in the

percentage of answers are wrong or absent.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

50

REFERENCES

[1] S. H. Wantah Satria, "Pembuatan Media Pembelajaran Untuk Proses Konversi Pada Finite
Automata Berbasis Multimedia," Jurnal Sarjana Teknik Informatika e-ISSN: 2338-5197, vol. 1,
no. 1, 2013.

[2] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation and Compiling, New York:
Prentice Hall Englewood Cliffs, 1973.

[3] A. W. Appel and M. Ginsburg, Modern Compiler Implementation In C, New York: CAMBRIDGE
UNIVERSITY PRESS, 1998.

[4] D. Grune and C. J. Jacobs, Parsing Techniques - A Practical Guide, New York: Springer, 2008.

[5] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, New York: Addison-Wesley, 2001.

[6] A. V. Aho, M. S. Lam, R. Sethi and J. D. Ullman, Compiler: Principles, Techniques, and Tools, New
York: Pearson Educating Addison Wesly, 2007.

[7] J. V. Neumann, "The General and Logical Theory of Automata," Cerebral Mechanisms in
Behavior, vol. 1, no. 51, pp. 288-326, 1951.

[8] D. A. Watt and D. F. Brown, Programming Language Processors in Java, Compiler and
Intepreter., New York: Pearson Education, Addison Wesly, 2000.

[9] P. Skrzypczak, "Parallel Parsing of Context-Free Grammars," Master Thesis MCS, Blekinge
Institute of Technology, Karlskorna, 2011.

[10] T. Parr, Language Implementation Patterns Create Your Own Domain-Specific and General
Programming Languages, Raleigh, North Carolina Dallas, Texas: The Pragmatic Bookshelf, 2010.

[11] T. Parr and K. Fisher, "LL(*): the foundation of the ANTLR parser generator," ACM SIGPLAN
Notices - PLDI, vol. 11, 2011.

[12] A. Shamshad , "CYK Algorithm," International Journal of Scientific Research Engineering &
Technology (IJSRET) , vol. 1, no. 5, pp. 1-4, 2012.

[13] J. Cocke and J. T. Schwartz, "Programming Languages And Their Compilers," Courant Institute of
Mathematical Sciences, New York University, New York, April 1970.

[14] K. T and K. Torii, "A Syntax-Analysis Procedure For Unambiguous Context-Free Grammars,"
Journal Of The Acm (JACM), vol. 16, no. 3, 1969.

[15] D. M. Younger , "Recognition And Parsing Of Context-Free Languages In Time n3," Information
And Control, vol. 10, pp. 189-208, 1967.

[16] I. Somerville, Software Engineering, Boston, Massachusetts.: Pearson Education, Addison-Wesly,
2011.

[17] E. Gansner, "Graphviz - Graph Visualization Software, Envisioning connections," AT&T Labs-
Research, - - -. [Online]. Available: http://www.graphviz.org. [Accessed 2 April 2016].

[18] L. Szathmary, "GraphViz Java API," GraphViz Java API, 4 December 2003. [Online]. Available:
https://github.com/jabbalaci/graphviz-java-api. [Accessed 2 April 2016].

[19] Sugiyono, Metode Penelitian Kuantitatif, Kualitatif dan R &F, Bandung: Alfabeta, 2010.

[20] A. Sudijono, Pengantar Statistik Pendidikan, Jakarta: Rajawali Press, 2010.

[21] M. Lange and H. Leiß, "To CNF or not to CNF? An Efficient Yet," Informatica Didactica, vol. 8,
2009.

[22] N. Bodenstab, "Efficient Implementation Of The CKY Algorithm," Computational Linguistics,
Final Project Paper, 2009.

Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 2 No. , April 2017, pp. 37 – 51

51

[23] S. A. Blythe, M. C. James, and S. H. Rodger, "LLparse and LRparse: Visual and Interactive Tools
for Parsing," in Proceedings of the Twenty-fifth SIGCSE Technical Symposium on Computer
Science Education, 1994.

