
Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493)
Vol. 7 No. 1, April 2022, pp. 80 – 88

80

A Good Relative Percentage Increase (RPI) of Variant Job
Scheduling Using Artificial Bee Colony (ABC)

Riri Damayanti Apnena*1, Firdhani Faujiyah2
1)Mekanik Industri dan Desain, Politeknik TEDC Bandung
Pesantren KM. 2, Cibabat, Kec. Cimahi Utara, Cimahi City, Jawa Barat, 40513
2)Manajemen Pemasaran Industri Elektronika, Politeknik APP Jakarta
Jl. Timbul No.34, RT.6/RW.5, Cipedak, Kec. Jagakarsa, Kota Jakarta Selatan, Daerah Khusus
Ibukota Jakarta 12630
E-mail : riri.damayanti.apnena@poltektedc.ac.id*1,f.firdhani@poltekapp.ac.id2
*Corresponding author

Abstract - Artificial Bee Colony (ABC) which is a development of the intelligent swarm model and
is a branch of artificial intelligence based on self-organization systems. Artificial Bee Colony
(ABC) is an intelligent algorithm that is inspired by the food search process carried out by bees.
This is like what is done when there are many jobs that need to find the optimal value, where
each job to be processed has a specific route of operations to be performed on a set of machines,
and a different flow shop and variant: all jobs follow the same machine sequences. We will focus
on the latter. In this study, ABC is implemented to optimize work scheduling, in this case 7
different variations are used with mxn values between 10x3 to 40x15 on 10 to 40 jobs. To
evaluate the results, the Relative Percentage Increase (RPI) has been used in the test with an
achievement range between 1.9 to 18.9.

Keywords – Scheduling, Job Shop, Artificial Bee Colony (ABC)

1. INTRODUCTION

Production scheduling is a decision-making process that exists in most manufacturing

and production systems, as well as in most information processing environments. Similarly, it is
also applied in the transportation and distribution environment and in other types of service
industries. Scheduling attempts to allocate limited resources to tasks over time. It is a decision-
making process aimed at optimizing one or more objectives. Resources and tasks can take many
forms, for example, a resource can be a machine in a shop, a runway at an airport, a crew at a
construction site, a processing unit in a computing environment, etc. and tasks can be operations
in the production process, take-off and landing at airports, stages in construction projects,
execution of computer programs, etc. Each task can have a different priority level [1]–[4], among
other things based on the earliest possible start time or due date. Goals can also take many
forms.

One possible goal is to minimize the time for completion of the last task, and another
possible goal is to minimize the number of tasks completed after a specified due date [2]. In the
same way, various limitations can be considered, such as not allowing the machine to be idle
while processing different jobs. These constraints model important practical situations when
very expensive machines are used or technical limitations prevent these situations from
occurring [5]. Moreover, despite its great relevance, this is an issue that has not been specifically
addressed in the literature. That is why we cover this aspect in this work. The specific purpose

81

of this work is solving programming problems in a flow shop environment, to minimize the
completion time of the last job, or makespan, under the no idle limit, that is, inactivity in the
machine is not allowed after the first job starts processing [6].

Scheduling is responsible for allocating resources to tasks that must be performed over
a time horizon to achieve a production plan, and time horizons are usually less than a week.
Thus, scheduling is the allocation of resources to the tasks that define the production plan [7],
and its complexity and importance will grow to the extent that the use of resources conflicts.
Common scheduling conditions for all production systems:

• They are complex decisions. And its complexity will continue to increase due to the
current trend of increasing flexibility in customer orders, which results in increasing the
complexity of the production process.

• It has a short time horizon, the life cycle of an order or schedule is usually very short.
• Despite being short-term decisions, they are usually very important for an organization's

production line since they have a direct impact on production costs and delivery times,
which affects the company's competitiveness (delivery time and costs).

• Because they are located in the center of production operations, the scheduling
restrictions and objectives are highly dependent on the type of company.

• They are usually structured decisions, which allows information, criteria and limitations
to be easily formalized.
Programming problems are generically referred to as α | β | γ [4], being α the

environment to be considered. There are different types of environments:
• Single Machine (α=1). Indicates that it is a single machine environment.
• Parallel Machine. It is made up of a series of parallel machines through which any job

can be processed. In turn, they can be divided into:
▪ Identical Parallel machines (α=Pm). The process times do not depend on the

machine.
▪ Uniform Parallel machines (α=Qm). Each machine has different speeds.
▪ Unrelated Parallel machines (α=Rm). The most general case, with different

machines.
• Workshop-type environments, with machines arranged in series, and which differ

depending on the route of their work:
▪ Flow Shop (α=Fm). All jobs have the same route.
▪ Job Shop (α=Jm). Jobs follow a predetermined path through machines.
▪ Open Shop (α=Om). The jobs path is not defined. It is the most complex of all.

There are also hybrid environments (α=Hm), formed by the combination of several
environments.

2. RESEARCH METHOD

2.1. Job Shop

The production configuration of the flow shop type consists of a group of machines that
perform their tasks sequentially, as we can see in Figure 1. The first task must be done on the
first machine first, then on the second machine, and so on. This figure schematically shows what
a flow shop configuration looks like. Four work centers represented by four machines [5], [8].
The arrows indicate the direction of the jobs that are processed in said system. All jobs go
through all machines and in the same sequence.

In a more formal sense, a flow shop system consists of a set J = {𝐽1, …, 𝐽𝑛} of n jobs and
a set M = {𝑀𝑖, …, 𝑀𝑚} of m machines. Each job consists of a set 𝑂𝑗 = {𝑂𝑗,1, …, 𝑂𝑗,𝑚} of m
operations, where the ith operation is executed on machine 𝑀𝑖 . Furthermore, the operation

82

𝑂𝑗,+1 can start if and only if the operation 𝑂𝑗,𝑖 was completed. Each operation 𝑂𝑗,has a
processing time 𝑝𝑖,𝑗 ϵ ℕ. Each machine 𝑀𝑖 can process only one operation at a time.

A job ordering σ is defined as the sequence in which each machine will process the jobs,
and consequently the operations that it must perform. Two types can be distinguished [7], [9],
[10]:

• If this ordering of jobs on each machine is the same, the scheduling problem is called a
permutative flow shop problem (PFS).

• Otherwise it is called non-permutative flow shop problem (NPFS).

Figure 1. Flow Shop Gantt Chart with no-idle constraint

Within the Flow shop environment, the no-idle constraint is considered. An interesting
situation arises when no machine downtime is allowed between jobs. This restriction models an
important practical situation that arises when expensive machinery is used. Idling in expensive
equipment is often undesirable or even not possible due to technological limitations [11], [12].
Some examples are the steppers used in the production of integrated circuits by
photolithography. Other examples come from industries where less expensive machinery is
used, but where machines cannot be easily stopped and restarted or it is completely
uneconomical to do so [5], [6], [10]. Ceramic roller kilns, for example, consume a large amount
of natural gas when in operation. Idling is not an option because it takes several days to stop
and restart the oven due to very large thermal inertia. In all these cases, idling should be avoided.

2.2. Artificial Bee Colony (ABC)

To solve the problem described, the "Artificial Bee Colony" (ABC) algorithm has been
chosen, which has shown to have good performance compared to other resolution methods for
this type of problem in a Flow shop environment [11], [12]. These results are shown in the
computational analysis chapter. The Artificial Bee Colony is an optimization algorithm based on
swarm intelligence, proposed by Karaboga (2005) to solve modal evolutionary optimization
problems [3], [7]. One of the advantages of this algorithm over others is the use of few control
parameters [13], [14]. It is inspired by the intelligent behavior that bees follow when searching
for food. The bees, they are divided into 3 groups:

83

• Employed or employed bee: It is one that is carrying out the exploitation of a food
source.

• Spectator or onlooker bee: They are the bees that wait in the hive for the information
given by the employed bees, in order to decide which of the current food sources should
be exploited.

• Explorer or scout bee: They are those that perform a random search in order to find new
food sources.
In the algorithm, each of the possible solutions to the problem considered are called

food sources and are represented by a vector of dimension n, while the quality of each solution
corresponds to the amount of nectar present in said food source. Like other techniques based
on swarm intelligence, it is an iterative process [15], [16]. The algorithm starts with a randomly
generated population of food sources, and then the following steps are followed until a
termination criterion is reached:

1. The employed bees are sent to the food sources and the amounts of nectar present in
them are measured.

2. Bystander bees select food sources after sharing information with employed bees.
3. Determine scout bees and send them to potential new food sources.

The parameters of the original ABC algorithm are the number of food sources (SN),
which is equal to the number of employed or spectator bees [4], [17], the number of attempts
after which a food source must be abandoned (limit), and the criterion of termination. The main
phases of the original algorithm as shown in Figure 2.

Figure 2. Artificia Bee Colony Steps in this research

3. RESULTS AND DISCUSSION

This section aims to adapt and use the ABC algorithm in solving the problem posed in

this TFG, a problem in a flow shop type environment, considering the no-idle constraint. This
algorithm has shown to have good results in solving optimization problems, compared to other
similar algorithms, with the advantage of using fewer control parameters. The algorithm seeks,
following the same methodology described above, to find an optimal solution to the problem.
This section explains the ABC algorithm; thus, the steps to be followed by the algorithm are
explained in detail, as well as the changes necessary to adapt it to our problem, since it was
originally designed for the optimization of continuous functions. To guarantee a certain quality
and diversity of the population, the initial sequences are generated as explained below:

84

● One of the sequences has been generated by assigning the SPT (Shortest Processing
Time) rule to the first machine, that is, ordering the processing times of the jobs in the
sequence in ascending order.

● Another of the sequences has been generated by assigning the LPT (Longest Processing
Time) rule to the last machine, that is, the jobs of the sequence in descending order of
processing time.

● The rest of the sequences were generated randomly, in order to ensure the diversity of
the population as mentioned above.
The variations of the algorithm have been made in the spectator bee or onlooker phase,

specifically when choosing the members of the population that are susceptible to change. This
phase plays a very important role in the algorithm, since it decides where to focus the search
efforts. Placing too much emphasis only on the best sequences, we limit ourselves to certain
search areas, being able to get trapped in a local optimum, while giving opportunity to a priori
unpromising sequences, the search is too dispersed, making it difficult to reach an optimal
solution to the problem. That is why we must try to avoid these two extremes, reconciling global
exploration with local exploitation. We have made 7 variations of the algorithm in this aspect,
in all cases making SN improvement attempts on the sequences. In the first place, we have made
3 variants that consist of a tournament, in which the sequences compete with each other and
only the best one is selected had been illustrated in Table 1.

Table 1. Variable of Experiment

Variant name Explanation

ABC1
A size 2 tournament is held that corresponds to the variant used. In this
tournament the best sequence is selected between 2 chosen randomly

ABC2
Same as in the previous case but with a tournament of size 3 sequences, that is, 3
sequences are chosen randomly, they are compared between them and the best
one is selected.

ABC3
Each sequence is assigned a probability ϵ (0.1), entering the tournament those with
a probability less than 0.4.

For the rest of the cases, among the SN=10 (see values of the parameters in Annex 1) times that the phase
is carried out, instead of a tournament we directly distribute the number of attempts among the best
sequences of the population. For example, (4,3,3) would be sharing the 10 trials by assigning 4 trials to the
best sequence, 3 trials to the second best sequence, and the other 3 to the third best sequence. Following
this notation, the remaining variants would be as follows

ABC4 5 attempts for the best sequence and 5 for the second. (5 .5).

ABC5 2 Improvement attempts for each of the 5 best sequences. (2, 2, 2, 2, 2).

ABC6 (3, 2, 2, 1, 1, 1) Improvement attempts for the best sequences respectively.

ABC7 (3, 3, 2, 2) Improvement attempts for the best sequences respectively.

With these variants in Table 1, it is intended to address the problem mentioned above,
of balancing the global search with the local exploitation in a varied way. Some variants focus
only on the best sequences, such as the variant ABC4, while others involve and give opportunity
to improve a larger number of them. In this block we will analyze the efficiency and results
obtained when solving the problem with the proposed algorithm and its variations. As we
mentioned before, it is a problem in a Flow shop environment under the no-idle restriction or
inactivity in machines not allowed. We have a total of 20 different instances according to the
following sizes of jobs and machines respectively, (n = 10, 20, 30, 40; m = 3, 5, 7, 10, 15). The
work times are randomly generated being 𝑝𝑖, ϵ (0.99). The algorithm parameters are as follows:
SN = 10 (population members), limit = 20 (number of failed attempts before abandoning food
source), 𝑝𝐿 = 0.1 (probability of performing local search), and 𝑙𝑚𝑎𝑥 = 𝑛2 (number of iterations
in the local search). Regarding the process time, CT = 5𝑛2𝑚 ms is established as termination
criterion as illustrated in Figure 3.

85

Figure 3. Variants of The Algorithm

Based on Figure 3, we calculate the Relative Percentage Increase (RPI) values for each
instance and variant. The values obtained for all the instances for each variant of the algorithm
and the total average of each of them are shown in Figure 3. The best overall result is from the
second variant, although very different results are not observed between the different variants,
unlike if we only consider more specific cases of the problem.

In the sections that follow, the RPI values divided according to the number of jobs are
shown and analyzed, thus leaving 4 groups of instances of 10, 20, 30 and 40 jobs, respectively.
In this way we can analyze the performance of each of the variants for specific problem cases.
We can also observe these results, the mean being represented by the black bar. In addition, we
can also see more clearly the RPI values for each job instance in each variant of the algorithm.
In the case of instances with 20 jobs, we can see that the third variant obtains the best results,
having the best average value in addition to obtaining the best value in 3 of the 5 instances
considered, as we can see in Figure 3. For instances of 30 jobs, the third algorithm obtains the
best average result, although not with a very significant difference, this being very similar to that
obtained with other variants. Lastly, we consider the case of instances of 40 jobs, where it is the
first algorithm that obtains the best result, with a greater difference compared to the other
variants than in the previous case. Said algorithm obtains the best result in 3 of the considered
instances. However, it does not give a good result in the specific case of 40 jobs and 7 machines.
On the other hand, the fourth, fifth and sixth variants do not obtain a good average result, in
addition to not finding the best solution in any of the instances.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1
0

x3

1
0

x5

1
0

x7

1
0

x1
0

1
0

x1
5

2
0

x3

2
0

x5

2
0

x7

2
0

x1
0

2
0

x1
5

3
0

x3

3
0

x5

3
0

x7

3
0

x1
0

3
0

x1
5

4
0

x3

4
0

x5

4
0

x7

4
0

x1
0

4
0

x1
5

V
al

u
e

m x n

A Result of Variation Algorithms

ABC
1

ABC
2

ABC
3

ABC
4

ABC
5

ABC
6

ABC
7

86

Figure 4. RPI Results of Variant Jobs

0 2 4 6 8 10 12 14 16 18

10x3

10x5

10x7

10x10

10x15

20x3

20x5

20x7

20x10

20x15

30x3

30x5

30x7

30x10

30x15

40x3

40x5

40x7

40x10

40x15

RPI Value

m
 x

 n
A Result of RPI of Instances with variant jobs

ABC7 ABC6 ABC5 ABC4 ABC3 ABC2 ABC1

87

4. CONCLUSION

This work tries to address a production scheduling problem, specifically a problem in a

flow shop environment with the objective of minimizing the makespan. We consider the no-idle
constraint, which does not allow machines to idle once they have started processing the first
job. To solve this problem, we have used an optimization algorithm, called Artificial Bee Colony
(ABC), which uses swarm intelligence to find an optimal result for the problem. This algorithm
simulates the real behavior of bees when searching for food sources. We have made various
variants of the algorithm, specifically in the onlooker bee phase, explained earlier in this
document. Based on the results obtained, the conclusions reached are the following:

● The second variant has obtained the best average results. This variant proposes the
realization of a tournament of size 3 when choosing the sequences that are considered
most promising and that deserve more effort to be exploited by the algorithm.

● However, other variants have shown better efficiency for specific instances among the
proposals, such as the first variant for instances with 40 jobs, or the third for instances
of 20 and 30 jobs.
As lines of future research, variations of the algorithm could be explored in other phases

of the same, in addition to applying them to other problems with different characteristics, which
have not been sufficiently studied in the literature.

REFERENCES

[1] T. Meng, Q. K. Pan, and H. Y. Sang, “A hybrid artificial bee colony algorithm for a flexible

job shop scheduling problem with overlapping in operations,” Int. J. Prod. Res., vol. 56, no.
16, pp. 5278–5292, 2018.

[2] M. Shahgholi Zadeh, Y. Katebi, and A. Doniavi, “A heuristic model for dynamic flexible job
shop scheduling problem considering variable processing times,” Int. J. Prod. Res., vol. 57,
no. 10, pp. 3020–3035, 2019.

[3] G. Gong, R. Chiong, Q. Deng, and X. Gong, “A hybrid artificial bee colony algorithm for
flexible job shop scheduling with worker flexibility,” Int. J. Prod. Res., vol. 58, no. 14, pp.
4406–4420, 2020.

[4] X. Long et al., “Research on job-shop scheduling problem based on bee colony algorithm,”
J. Phys. Conf. Ser., vol. 2033, no. 1, 2021.

[5] Y. Li, W. Huang, R. Wu, and K. Guo, “An improved artificial bee colony algorithm for solving
multi-objective low-carbon flexible job shop scheduling problem,” Appl. Soft Comput. J.,
vol. 95, p. 106544, 2020.

[6] Z. J, S. Z.H., and C. C., “An Improved Whale Optimization Algorithm for Job-Shop
Scheduling Based on Quantum,” Int j simul Model, vol. 18, pp. 521–530, 2019.

[7] T. K. Dao, T. S. Pan, T. T. Nguyen, and J. S. Pan, “Parallel bat algorithm for optimizing
makespan in job shop scheduling problems,” J. Intell. Manuf., vol. 29, no. 2, pp. 451–462,
2018.

[8] N. Xie and N. Chen, “Flexible job shop scheduling problem with interval grey processing
time,” Appl. Soft Comput. J., vol. 70, pp. 513–524, 2018.

[9] J. Sassi, I. Alaya, P. Borne, and M. Tagina, “A decomposition-based artificial bee colony
algorithm for the multi-objective flexible jobshop scheduling problem,” Eng. Optim., vol.
54, no. 3, pp. 524–538, 2022.

[10] R. Wu, Y. Li, S. Guo, and W. Xu, “Solving the dual-resource constrained flexible job shop
scheduling problem with learning effect by a hybrid genetic algorithm,” Adv. Mech. Eng.,

88

vol. 10, no. 10, pp. 1–14, 2018.
[11] S. Sundar, P. N. Suganthan, C. T. Jin, C. T. Xiang, and C. C. Soon, “A hybrid artificial bee

colony algorithm for the job-shop scheduling problem with no-wait constraint,” Soft
Comput., vol. 21, no. 5, pp. 1193–1202, 2017.

[12] X. Li, S. Xiao, C. Wang, and J. Yi, “Mathematical modeling and a discrete artificial bee
colony algorithm for the welding shop scheduling problem,” Memetic Comput., vol. 11,
no. 4, pp. 371–389, 2019.

[13] N. Sharma, H. Sharma, and A. Sharma, “Beer froth artificial bee colony algorithm for job-
shop scheduling problem,” Appl. Soft Comput. J., vol. 68, pp. 507–524, 2018.

[14] K. Peng, Q. Pan, and B. Zhang, “An improved artificial bee colony algorithm for
steelmaking–refining–continuous casting scheduling problem,” Chinese J. Chem. Eng., vol.
26, no. 8, pp. 1727–1735, 2018.

[15] D. Gong, Y. Han, and J. Sun, “A novel hybrid multi-objective artificial bee colony algorithm
for blocking lot-streaming flow shop scheduling problems,” Knowledge-Based Syst., vol.
148, pp. 115–130, 2018.

[16] J. Xie, L. Gao, Q. K. Pan, and M. Fatih Tasgetiren, “An effective multi-objective artificial bee
colony algorithm for energy efficient distributed job shop scheduling,” Procedia Manuf.,
vol. 39, no. 2019, pp. 1194–1203, 2019.

[17] X. Long, J. Zhang, K. Zhou, and T. Jin, “Dynamic Self-Learning Artificial Bee Colony
Optimization Job Insertion,” processes, vol. 10, pp. 1–22, 2022.

